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Abstract 

In this paper we consider the Quadratic Unconstrained Binary Optimization (QUBO) Problem. 
Using a suitable function and penalty parameter we can reformulate the original QUBO problem as a 
continuous program. It is shown that the problem of large size can be reduced to two constraints. A 
new convex formulation is then proposed.  

1 Introduction 
In this paper we consider the quadratic unconstrained binary optimization (QUBO) problem: 
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where Q is a nn×  real symmetric matrix, but not necessarily positive semidefinite, c is a constant 
vector: nT

ncccc ℜ∈= ),,,( 21 K  and x is an n-vector of binary variables: { }nx 1,0∈ . The superscript
“T” indicates transposition. nℜ is the Euclidean space of n-dimensional column vectors with the 
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and ℜ denote the set of real numbers. 

The problem considered by quadratic programming (1) occurs in different applications [1], [2], 
[3]. There are several problems of decisions whose modeling is reduced to the binary quadratic 
optimization. Such problems are frequently found in Operations Research, in Graph Theory, in 
Economic Science and in other areas [4], [5]. The QUBO problem is a problem of combinatorial 
optimization and is well known as NP – hard [6] and so, is difficult to solve. For example, the 
well studied max-cut problem is a problem of QUBO. 
There were developed and proposed different methods of solving and various relaxation 
techniques of the considered problem: 

• Semidefinite Relaxation [7]
• Lagrangian Relaxations [7]
• Linearization Techniques [8], [9]
• Convex – programming Relaxation [10], [11], [12], [13]
• Heuristic Methods [4], [14].

The simplest relaxation technique is the continuous relaxation that consists in replacing the 
discrete conditions nixi ,,2,1},1,0{ K=∈ with continuous constraints 10 ≤≤ ix for all ni ,,2,1 K=  . 
In the present paper are considered some representations of the binary set n}1,0{ by means of which 
continuous reformulations for the QUBO problem could be obtained. But there are many large 
dimension problems at practical applications which are intractable. 
This paper is organized as follows: in Section 2 we extend a well-known result on representation 
the constraints nixi ,,2,1},1,0{ K=∈ ; in the third Section we show how one can considerably 
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reduce a big number of simple constraints ,,,2,1,10 nixi K=≤≤  to only two convex constraints. In 
Section 4, by means of penalization parameters, the initial problem is reduced to a known problem 
in literature - DC problem.  

2 Continuous Reformulation of QUBO Problem 
The QUBO problem can be transformed into a continuous optimization problem, represented the 
binary set n}1,0{ through inequations system: 
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where Te )1,,1,1( L=  is the vector, all components of which are equal to one and  ℜ→ℜnxp :)(  is a 
continuous function that checks the inequality and the equality: 
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Acting as )(xp  with the above properties (3) has been proposed and used the concave functions [15], 
[16]: 
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There is infinity of such functions. In what follows, we would propose three other continuous 
functions with similar features. 
Let the function 
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Function )(up  is a concave function, continuously differentiable to derivatives: 
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has the required properties. 
Another function would be 
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which generates the function  
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We bring another example of a function )(up that is twice continuously differentiable but is not 
concave on the interval ]1,0[ : 
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which generates the function  
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Graphs functions (4), (6) and (8) are presented below (Fig. 1): 
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Fig. 1.The graphs of )(1 up ,  )(1 up  and )(3 up . 

Using the functions (5), (7) or (9), quadratic programming problem (1) can be representing in the 
equivalent form: 
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We mentioned that 0)( =xp s ,  2,1 == ss or  3=s for any 10 ≤≤ ix ,  ni ,,2,1 K= . 

3 Reducing the Number of Constraints 
The problem (10) includes 2n simple constraints: 
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For sufficiently large n there are some major problems in solving the problem (10). 
In what follows we will show how we can reduce these 2n simple restriction to only two convex 
constraints. 
The constraint 0≥u  is equivalent to inequation   0)(1 ≤uγ or with the inequation  0)(2 ≤uγ , and the 
constraint 1≤u  is equivalent to  0)(3 ≤uγ or with   0)(4 ≤uγ where 
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The functions )(),( ),( 321 uuu γγγ  and )(4 uγ are convex functions for ℜ∈∀u , for example,  )(1 uγ and 
)(3 uγ look like that (Fig. 2): 
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Fig. 2.The graphs of  )(1 uγ and  )(2 uγ  

As 02 ≥− iii xxx  and 0≥+− ii xx  for ℜ∈∀ ix  the restrictions nixi ,,2,1,0 K=≥  are equivalent to the 
constraint 0)(1 ≤xϕ  or 0)(2 ≤xϕ , where  
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Similarly it is determined that the conditions  nixi ,,2,1,1 K=≤  are equivalent to the convex constraint 
0)(1 ≤xg  or 0)(2 ≤xg , where 
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The functions )(1 xϕ ,  )(2 xϕ ,  )(1 xg and )(2 xg are convex and determines convex set. For example, for 
2=n the functions  )(1 xϕ and  )(1 xg are as follows (see Fig. 3): 

0.5 0.25 0 -0.25 -0.5 -0.75 -1

0.50.250-0.25-0.5-0.75-1

4

3

2

1

0

x1

x2

               

2 1.75 1.5 1.25 1 0.75 0.5

21.751.51.2510.750.5

4

3

2

1

0

x1

x2

 
  

Fig. 3. The graphs of  )(1 xϕ and  )(1 xϕ )(1 xg  

So the problem (10) which has (2n+1) constrains can be reduced to a problem of optimization 
only with three constrains: 
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where the convex functions )(1 xϕ , )(2 xϕ , )(1 xg , )(2 xg  are determined by the formulas (11) and (12), 
while the concave functions )(1 xp  and )(2 xp  by formulas (5) and respectively (7). 

4 Reduction to a DC problem 
In problems (13) and (14) the constraints 0)(1 ≤xp  or  0)(2 ≤xp  are difficult as they represent non-
convex sets. One way to ease the solution of problems (13) and (14) is to penalize these 
constraints. This can be carried out in such a way: Let us consider the optimization problem 
obtained from the problem (13): 
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where 0>τ  is a sufficiently large positive number (parameter penalty). If the matrix Q is positive 
semidefinite then the function )(

~
xf  is represented as the difference of two convex functions and thus 

the problem (15) becomes a DC (Difference of Convex Functions) Programming [17], [18]. It could be 
found a 0τ  so  that for  0ττ ≥∀ the problems (13) and (15) have the same optimal solutions. To solve 
such problems (15) can be used with success DC Algorithm [18]. 

5 Conclusions 
In this work we are interested in the resolution of quadratic optimization problem in variable 
binary 0-1.The main idea is to transform QUBO problem into a new problem of optimization with 
only two convex constraints. The objective function )(xf is reformulated a new function )(

~
xf , 

convex and equal to  )(xf  for any admissible solutions QUBO problem. The results obtained with 
this approach are promising. On all convex functions that we considered )(1 xp , )(1 xϕ and )(1 xg to 
have been very effective. 
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