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Abstract 

We have implemented an Imperialist Competitive Algorithm (ICA) to a determine the global 

minimum for nine functions. Some of these represent benchmarks of the problem, while others have 

expressions that we have defined. For a start, we used three of these functions to determine a set of 

optimal parameters for the ICA. Then we studied the way in which the behaviour of the ICA is affected 

by these parameters in order to solve the problem put forth for the nine functions. Finally, we studied 

the behaviour of the ICA as affected by variable parameters for the most difficult of the nine functions. 

In our algorithm, the values of some of the parameters change dynamically. The results indicate a 

better behaviour of the solutions provided by this method. 

1 The Imperialist Competitive Algorithm: Structure and 

Parameters 

At the “IEEE Congress on Evolutionary Computation” held on September 27-28, in 2007, 

Esmaeil Atashpaz Gargari and Carlos Lucas presented a paper describing a new type of 

evolutionary algorithm inspired by history [1]. Called the “Imperialist Competitive Algorithm” 

(ICA), it is modelled on the political and historical events from the 17th, 18th and 19th centuries. 

The ICA belongs to the category of meta-heuristic algorithms based on sets of candidate solutions 

called “populations” (along with genetic algorithms, algorithms of the “swarm of particles” type, 

GSA gravitational search algorithms, etc.). The standard structure of an ICA as presented in [1] is 

the following: 

1. Generating an initial set of countries; 

2. Initializing the imperialist countries; 

3. Occupying the colonies; 

4. Assimilating the colonies; 

5. If a colony has better results than the imperialist country then 

a. Interchanging the colony with the imperialist country 

6. The imperialist competition: 

a. Computing the results of the empires 

b. Occupying the weakest colony of the weakest empire by another empire 

c. If the weakest empire has no colonies left then 

i. Removing this empire 
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7. If the stopping requirements are met then Stop 

    Otherwise  Repeat the algorithm from step 3. 

The imperialist country that has the best results in the last iteration is the solution to the problem. 

Below is a brief description of the steps of an ICA. 

A. Generating an initial set of countries 

In the ICA, a country is a possible solution to the problem studied. When determining the 

minimum for real functions of known expression with n variables (n=2,3,4, ...), a country is 

represented by a set of n real values. The number of countries is a first parameter of the ICA. As 

with other evolutionary algorithms, the considerable size of the initial set leads to a higher 

probability of finding combinations with higher performance. On the other hand, given the 

complexity of the algorithm, raising the number of countries causes a linear increase in the 

runtime. In the completed applications, different values were chosen for this parameter: 55, 108 

and 210. For the proper generation, the function in the C standard library has been used, as it 

provides quasi-random values. 

B. Assessment of the initial set of countries and their revaluation 

The existence of a function that allows the evaluation of the performance of potential 

solutions, in our case the performance of a country, is a prerequisite to solve a problem by means 

of this algorithm. In the problem studied, the evaluation function is precisely the function value 

calculated for the values representing a country. Since we aimed at determining a minimum, the 

evaluation function was a penalty: the lower the value of the evaluation function, the more 

efficient a country. 

C. Initialization of imperialist countries 

The initial number of “imperialist countries” (or original number of empires) is another 

parameter characteristic of this algorithm. In the applications that we ran, this number was 5%, 

10% or 15% of the original number of countries. Following the initial assessment, the countries 

with the best values of the evaluation function became imperialist countries.  

D. Occupying the colonies 

In this algorithm, the countries that do not become imperialist countries turn into colonies 

and “fall within the scope” of imperialist countries. The lower the value of the evaluation function 

of that imperialist country, the higher the number of colonies assigned to an imperialist country. 

The ensemble comprising the imperialist country and the occupied colonies form an empire. The 

formulae for determining the number of colonies belonging to each imperialist country, 

designated nrcoli, are given below. 

1-nrmet,0,1,i      vnrcol inrmeti   1   (1) 

where nrmet is the initial number of imperialist countries, and values v are calculated by 

means of the following formula 









 col

i
i nr

S

metfeval
v

)(
  (2) 

feval(x) is the value of the evaluation function of country x, meti is the imperialist country 

with current number i (i=0,1,…,nrmet-1), nrcol is the initial number of colonies (the difference 

between the total number of countries and the initial number of imperialist countries) and S is the 

sum of the values of the evaluation function for all the imperialist countries:  
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E. Assimilation of colonies 

By means of this operation characteristic of the ICA, the parameters of the countries of the 

“colony” type are transformed so that their values can be “attracted” towards the values 

corresponding to the parameters of the imperialist countries. The way in which this transformation 

takes place depends on the type of problem that is solved. The formula that we used is the 

following: 

))(1( 111   iiii paramcolparammetdpparamcolparamcol   (4) 

where paramcoli is the value of the colony parameter following iteration i, parammeti is the 

value of the parameter corresponding to the imperialist country of the colony following i, and d is 

a random value below par, d[-da/2 ; da/2]; da is called assimilation deviation. 

F. The revolution operation  

Following the historical model, some of the countries of the colony type undergo an 

operation resulting in modified parameter values. The probability of a country to undergo this 

operation is called revolution rate. Here is the way in which these values can be modified:  

- through a random regeneration: after this operation, all parameters of a  country are 

modified; 

- by applying a transformation opposed to that of assimilating some of the parameters (“anti -

assimilation”): 

))(1( 111   iiii paramcolparammetdpparamcolparamcol   (5) 

d[-dr/2 ; dr/2], dr, in this case representing the revolution deviation. 

G. The imperialist competition 

At this stage of the algorithm, the least powerful empire loses the least efficient colony at the 

expense of another empire. We start by calculating the performance of each empire using the 

following formula: 

)( jii performcolwpreformmetperformimp   (6) 

where w is the weight that the performance of a colony contributes to the performance of the 

empire w(0,1), performimpi and performmeti are the performance of the empire and that of the 

imperialist country i (i=0,1,…,nrmet-1), and performcolj is the performance of a colony belonging 

to empire i. To determine the empire that will assimilate the colony, we used the Monte Carlo 

method. A series of random values a0, a1, … , anrmet-1 / ai(0,1) was generated and the colony 

will belong to the empire for which the value of the expression below is maximum: 







1

0

nrmet

j

j

i
i

performimp

performimp
a   (7) 

If, following this operation, an empire loses all the colonies, the imperialist country of that 

empire also becomes a colony and is assigned to another randomly selected empire.  
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H. Completion of the algorithm 

There are two conditions that determine the completion of the algorithm and that we 

implemented: 

• one empire left (the ideal situation – convergent algorithm); 

• the maximum number of iterations was reached. 

As with other evolutionary algorithms, there are no mathematical demonstrations to prove 

that the algorithm converges towards the optimal solution. In fact, the algorithm refines the search 

in the vicinity of the points where the evaluation functions have good values. The competitive 

imperialist algorithms have a number of parameters that depend on their structure. For the 

algorithm structure presented before, the number of parameters is 10. 

2 The ICA determining the global minimum of functions with 

several arguments 

A major problem that should be considered when seeking to solve a problem with the help of 

an algorithm of this type is finding the optimal values for the algorithm parameters. In the 

specialist literature, we found no recommendations for that purpose. To solve this problem, we 

considered two categories of parameters: the first category included parameters whose values 

were combined in the tests observing the principle “with each other”: 

• Number of countries: 55, 108 and 210; 

• The values of the initial set of countries: the algorithm was run for 5,000 initial sets; 

• The number of imperialist countries: 5%, 10% and 15% of the total number of countries;  

• The method of implementing revolutions: no revolutions, regeneration and anti -assimilation 

(according to formula 4); 

• The maximum number of iterations: 3,000 (a value high enough so that the algorithms end 

on account of the fact that there is only one empire). 

The second category included parameters whose values were combined in the tests, following 

this rule: each of the five values of one of them was combined with the average values of the 

others. This was the procedure for the following: 

• the approach step used in assimilation and revolution operations: 0.1, 0.3, 0.5, 0.7 and 0.9;  

• assimilation deviations: 0.2, 0.6, 1.0, 1.4, 1.8; 

• revolution deviation: 0.2, 1.0, 2.0, 4.0, 20.0; 

• The percentage that colony contributes to the value of the performance of an empire: 0.01, 

0.05, 0.1, 0.5, 1.0; 

• The rate of revolution: was chosen as the number of countries whose parameters are 

modified so as to be proportional to the ratio between the number of countries and the originally 

defined number of empires, but so that the revolutions are initiated after a number of iterations 

(marked T) equal to 1, 5, 10, 20 and 50; 

 Thus, we noted how the values of each of these parameters influenced the performance 

of the algorithm. The behaviour of the ICA was studied for three functions:  
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For each of these three functions were chosen the fields of definition [ -10; 10] and [-100, 

100]. By default, these fields were also those of searching the minimum and determining to what 

extent the size of this field affects the results. By joining the values selected for the ICA 

parameters, a number of 5,400 combinations resulted. Each of these combinations was run for the 

5,000 sets of countries and for each of the two areas. The tests conducted resulted in a set of 

optimal values for the ICA parameters, i.e.: 

• The method of implementing the revolution through regeneration; 

• The number of countries: 210; 

• The initial percentage of empires in the total number of countries: 5%. 

• The approach step, p = 0.1; 

• The percentage of colonies within the empire performance, w = 0.5; 

• The deviation from assimilation, yes = 1.8; 

• The number of iterations at which revolutions T = 1 occur; 

ICAs with parameters thus determined were used to calculate the minimum of nine reference 

functions or with an expression determined by us. Starting from the observation that the ICA does 

not guarantee finding the solution, we ran the algorithm for 100 initial sets. The number of these 

sets was selected so that the total running time should be under a minute, all tests being run o n an 

Intel Core i3 microprocessor at 2.93 GHz. 

Table 1 shows a summary of the results. The values in column nrOk represent the number of 

sets for which ICA located the global minimum of the function (out of the 100 sets used).  
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Table 1. Results obtained 
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 Valid definition fields except for functions in the expression of which it is explicit: f6, f8 and f9 
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The following figures shows the behaviour of the algorithm in determining the minimum of 

function f1: [-100;100][-100;100] for one of the 100 initial sets with 108 countries and 5 

imperialist countries. 

 

  

Fig.1 Distribution of colonies following one 

iteration 

Fig. 2 Distribution of colonies following10 

iterations 

 

 

Fig. 3 Distribution of colonies following 500 iterations 

The first figure illustrates the initial distribution obtained by random generation. The 

larger dots represent the location of the imperialist countries. With the same colour are marked the 

imperialist country and colonies that belong to it. After 10 iterations, we can notice the grouping of 

colonies around the imperialist country to which they belong as a result of assimilation. We can also 

see that two potential solutions are closer to the solution sought for. After 500 iterations, all 5 

imperialist countries as well as many of the colonies that belong to them are closer to the optimal 

solution. Figures 4, and 5 illustrate the behaviour of the algorithm in the case of function f2 for one 
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of the tests in which 108 countries and 5 imperialist countries were used. The first figure illustrates 

the initial distribution obtained by random generation. The larger dots represent the location of the 

countries. With the same colour are marked the imperialist country and colonies that belong to i t. 

Following 7 iterations, we can notice the grouping of the colonies around the imperialist country 

they belong to as a result of assimilation. Following 400 iterations, there is a group consisting of 

two imperialist countries located very close to each other and a group of three imperialist countries 

located very closet o them. Many of the colonies that belong to them are located in their vicinity. 

Following 1283 iterations, three empires were left, their imperialist countries being located very 

close to them. 

  

Fig. 4 Distribution of colonies following one iteration Fig. 5 Distribution of colonies following iteration no. 

1283 

3 Behaviour of ICA with variable parameters  

3.1 ICA with dynamic weight 

In the simulations performed, there were many situations in which the standard algorithm 

converged very slowly or was even stuck because the performance of last two, sometimes even 

three or four empires left in the algorithm, became very close – differences of the order of 0.1% of 

the values of the performance. The result was that, from a certain iteration, one and the same 

colony shifts from one empire to the other. Here is the explanation: when a colony shifts from one 

empire – be it I1 – to the other – be it I2, (since performance (I1) < performance (I2)), it 

undergoes an assimilation process by the new imperialist country. The immediate effect is a 

worsening of the performance of the colony; this value affects the performance of the empire 

which took over the colony, so that in the next iteration performance (I2) < performance (I1) and 

the weakest colony is precisely the one which has been taken over. Thus, the colony returns to the 

first empire, but with a performance value that was worsened by applying a new assimilation 

operation by I1. Once more, performance (I1) < performance (I2) and the weakest colony that will 

be taken over by I2 is obviously the one that has just returned to I1. This algorithm follows a loop: 

one colony shifts between the two empires, the others are assimilated in an increasingly higher 

percentage, and the chances that colonies with better performance than that of the imperialist 

country may appear decrease with each iteration. Such blockage has been removed by using 

weights whose values change dynamically as follows: initially, each colony is assigned the same 
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weight, having a predetermined value; whenever a colony changes the imperialist country, the 

value of the weight of that colony is reduced by multiplying it with a below par value. We called 

this value weight contraction (cw). Thus, equation (7) turned into: 

 jjii performcolwpreformmetperformimp   (11) 

where wj is the weight associated to colony j. 

Another change to the standard algorithm that was performed in order to avoid blockage was 

the following: the weakest colony is determined having as a criterion the product between the 

evaluation function and the weight of the colony in that iteration (and not only the value given by 

the evaluation function for that colony). Figures 10 and 11 illustrate the comparative evolution of 

empire performances when the ICA is applied to function f2: [-100;100][-100;100] for an initial 

set of 108 countries and 5 imperialist countries. Figures 12 and 13 illustrate the evolution of the 

number of colonies within each empire under the same conditions. It can be noted that the ICA 

with variable weight is completed after 253 iterations, but the performance of the algorithm is not 

affected. 

  

Fig. 6 Empire performances in the case of the ICA with 

fixed weight 

Fig. 7 Empire performances in the case of the ICA with 

variable weight cw=0.5 

 
 

Fig. 8 Evolution of the number of colonies in the case of 

the ICA with fixed weight 

Fig. 9 Evolution of the number of colonies in the case of 

the ICA with variable weight cw=0.5 
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In the following, we present the results obtained by applying the ICA with variable weight to 

determine the minimum of function f2 with the definition field [-100 ; 100]3, practically the most 

“difficult” of the functions studied. Table 2 shows the behaviour of the ICA in three cases: high 

fixed weight, low fixed weight and variable weight. The number of sets was 100 for the ICA with 

w=0.5 and cw=1 (fixed weight). In the other cases, this number was inversely proportional to the 

average number of iterations. After that, the algorithm stopped (we designated this quantity nrIt) 

so that the total running time may be the same for each of the three cases analyzed.  

 
 f2 : [-100;100]

3
 R 

55 countries 108 countries 210 countries 

Tip ICA min(f2) nrOk nrIt min(f2) nrOk nrIt min(f2) nrOk nrIt 

w=0.5, cw=1 0.844188 51 1150 0.844188 67 1337 0.844188 78 1792 

w=0.01, cw=1 0.844188 53 1257 0.844188 58 1593 0.844188 34 1089 

w=0.5, cw=0.5 0.844188 3 67 0.844188 47 172 0.844188 156 491 

Table 2. ICA with fixed weight vs. ICA with variable weight 

The most efficient variant of those shown in the table according to the number of cases where 

the minimum of the function is obtained is that of the algorithm with variable weight and 210 

countries in the initial set. 

 

3.2 ICA with variable revolution rate  

 

The ICA behaviour was studied when the number of countries where revolutions occur 

varies, this number increasing during the sequence of the algorithm. This is because, as the 

algorithm progresses, the number of colonies that will be in the vicinity of the imperialist 

countries is increasingly higher, due to the convergent formulae used in the assimilation 

operation. Hence, the idea of having an increasing number of countries involved in the 

revolutions. 

In the tests conducted, the revolution rate, designated probr below, had the following values: 

 
empires ofnumber  initial

countries ofnumber 
rprob  (12) 

 20
empires ofnumber  initial

countries ofnumber 
rprob  (13) 

 
50empirea ofnumber  initial

countries ofnumber iteration
probr   (14)  

 
100empires ofnumber  initial

countries ofnumber iteration
probr   (15) 

As it can be noticed, in the first three formulae, the revolution rate is fixed and, in the last 

two formulae, it is variable. The other parameters were kept constant at the values determined in 

section 2. The tests were also carried out in order to determine the minimum of function f2: [ -

100;100]3 R. The results are shown in Table 3. 
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probr 

(formula) 

Number of countries 

55 108 210 

 min(f2) nrOk min(f2) nrOk min(f2) nrOk 

12 0.844188 51 0.844188 67 0.844188 78 

13 0.862990 1 0.844188 52 0.844188 82 

14 0.844748 4 0.844188 55 0.844188 87 

15 0.844201 21 0.844188 62 0.844188 82 

Table 3. ICA with fixed revolution rate vs. ICA with variable rate 

A better behaviour of the ICA with variable revolution rate can be noticed in tests with a high 

number of countries (210) according to formula (16). This formula corresponds to the case where 

there is a more rapid increase in the number of countries subject to the operation of revolution 

depending on the iteration reached by the algorithm. 

4 Conclusions 

The ICA proved to be an efficient algorithm in determining the minimum of functions with 

several arguments. To determine an optimal set of parameters for the algorithm, we ran 

27,000,000 tests. The ICA with this optimal set of parameters was used to determine the global 

minimum for nine functions; for seven of them, we used two fields of definition. In 14 of the 16 

cases that resulted, the ICA determined the minimum in 100% of the 100 tests conducted. The 

lowest probability of obtaining the minimum was 78%. 

In section 3, we studied the behaviour of the ICA with two of its characteristic parameters 

dynamically modified. The studies were conducted for the function considered to be the most 

difficult. The first study aimed at modifying the parameter that determines the weight with which 

a colony influences the performance of the whole empire to which it belongs. This parameter was 

modified with the initial purpose of removing the blockages of the ICA because of very poor 

performance colonies. Thus modified, the ICA presented superior convergence: if for the ICA 

with fixed weight the algorithm stopped after 1792 iterations on average, the ICA with variable 

weight stopped after 491 iterations on average. Thus, within the same time interval, the ICA with 

fixed weight located the global minimum for the function studied for 78 initial sets and the ICA 

with variable weight located the minimum in 156 initial sets. 

The second study was concerned with the behaviour of the ICA when the number of countries 

where revolutions take place varies, increasing during the sequence of the algorithm. This is  

because, as the algorithm progresses, the number of colonies that will be in the vicinity of 

imperialist countries is increasingly higher, due to the convergent formulae used in the 

assimilation operation. Hence, the idea of having an increasing number of  countries involved in 

the revolutions. In the tests conducted, we used two formulae for this parameter. For one of them, 

the ICA located the minimum of function f2 in 86 of the 100 initial sets, which represented an 

improvement of the performance of the algorithm with 10.25%. 
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