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Abstract 

If a coherent beam is incident on a suspension containing scattering centers, light is scattered and a 

far interference field is produced, having the aspect of speckled image. As the scattering centers 

undergo a complex motion, the far field presents fluctuations that carry information regarding the 

motion. The motion can be: a random Brownian motion, a relatively uniform sedimentation motion or 

a combination of both motions with different weight. Placing a detector in a far field and recording the 

fluctuations will produce a time series. A previously written and tested code named CHODIN was used 

to generate time series for several systems. The Fourier transform and the Power Spectral Density were 

used and the results are discussed in connection with the problem of very fast identification of the type 

of motion, and therefore the type of scattering centers suspended in the target fluid.  

 

1 Introduction 

The process known as Dynamic Light Scattering became more and more interesting in the last 

decades in the area of Physics and Chemistry. The physical process of light scattering on particles 

in a suspension can be used for implementing an efficient technique for determining the dynamics 

of the processes which take place in the suspension, with direct application in determining the size 

distribution of the particles. The main challenges in the first stages of the method were the 

difficulty to obtain a coherent monochromatic light beam and the computational complexity of the 

analysis required, rendering this technique unfeasible [1]. The emergence of LASERs and the 

increase of computing power in the last 20 years made this technique feasible.  

Also known as “photon correlation spectroscopy” or “quasi elastic light scattering”, this 

method involves a coherent monochromatic light source (in most of the situations a laser is used) 

which illuminates a sample containing a solution or suspension containing particles.  Each particle 

undergoes an elastic interaction with the incident light beam and will act as secondary light source 

(Huygens principle) and will therefore scatter the light in all directions (Rayleight scattering for 

smaller particle sizes than the wavelength [2], [3], Mie scattering for bigger particles) [4]. The 

movement of the particles is, in the most general case, a complex phenomenon caused by the 

following concurrent processes: Brownian or thermal movement, aggregation and sedimentation. 
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Due to this complex movement each scattered light wave has a different phase leading to 

constructive, destructive or any other case in between by superposition, on a scattering image. 

Therefore the scattering image has spots of fluctuating intensity in each point and becomes a 

“boiling speckle” image. The intensity fluctuations contain information about the dynamics of the 

process, information which can be extracted by analysing the time series pattern recorded with a 

detector on a specific point. The analysis of the time series requires implementation of specific 

software which is able to recognise patterns in the input series offering as output information 

about several parameters of the suspension, like particle average size or size distribution.  

In this paper we will focus on developing a very simple algorithm based on the Fourier 

transform and the Power Spectral Density, which is capable of analysing a time series obtained in 

a Dynamic Light Scattering experiment on particles having sizes in the range 250 – 1000 nm, due 

to the wide array of application of nano and micro particles in technology and sciences. The 

algorithm is able to indicate, at a qualitative level, which of the time series corresponds to smaller 

particles and which to bigger particles, or in other words, is capable to recognise patterns in the 

time series and to sort them based on particle size. 

2 Fourier Transform and Power Spectral Density 

The time series is recorded at discrete times, being therefore a stochastic or random discrete time 

series. Having in focus our target to design a simple algorithm capable of identifying patterns 

related to particle size, the periodicity of the stochastic time series was used for pattern 

recognition. For identifying the periodicities within the time series, one useful mathematical 

function is the Power Spectral Density which can be derived from the Fourier transform of the 

time series. 

The Fourier transform is a reversible mathematical operation, which can transform a temporal 

signal from its time domain representation to its frequency domain representation. This operation 

is used for obtaining the frequency spectrum of a specific signal. For any real or complex function 

     which respects the condition: 

∫          
  

  
                                                                (1) 

The truncated Fourier transform is defined as [5]: 

     
 

√   
∫            
 

 
                                                         (2) 

 For the specific case of this article, the time series was first averaged, than the aver age value 

was extracted and the new time series was squared, resulting the power time series of the signal. 

The Fourier transform defined above was used to produce the power spectral density, S(f), using 

the fast Fourier transform implemented in MATLAB. 

  

3 Theoretical Heuristic Deduction 

As described in the introduction, we will focus on several simulated time series produced during a 

DLS experiment by nano and microparticles. It has been shown [6] that the main process which 

influences the intensity fluctuations and therefore the variation of the time series recorded for 

nanoparticles is the Brownian motion. The bigger are the particles, the slower they move, fact that 

can be also seen in principle by inspecting equation below: 

  √
    

 
                                                                (3) 

Where v is the root mean square speed, kB is Boltzmann`s constant, T is the temperature and m is 

the particle`s mass. 

 The fluctuation of the intensity is assumed to be more intense if the velocity of the particles 

is bigger, which means that the smaller particles are assumed to produce more intense 
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fluctuations. Judging in frequency representation, this means that the higher frequencies have 

more weight than the lower frequencies in the Fourier transform for smaller particles time series 

(and the other way around for bigger particles). This means that the Power Spectral Density can 

be used as an indicator for identifying the pattern: particle size – frequency in the time series.  

In this paper a very simple method for identifying this pattern is proposed. The power 

spectral density frequency domain is split into n intervals: 

    ,   , … ,                                                               (4) 

An average for each interval is computed obtaining n average values corresponding to the n 

frequency ranges: 

〈  〉, … ,  〈  〉                                                        (5) 

The ratio of the lowest frequency to the highest frequency is calculated as: 

    
〈  〉

〈  〉
                                                              (6) 

Data analysis presented in the next section reveals a monotone variation of the ratio R with 

the particle size, thus allowing the pattern recognition: 

                                                                       (7) 

4 Algorithm Description 

First a set of dynamic light scattering time series for different particle sizes was generated by 

using a previously developed and tested program called CHODIN [6]. One of the input parameters 

for CHODIN is the time step that is used to move the suspended particles at each simulation step. 

The algorithm for assessing the time step is described in detail in [7], therefore we will not repeat  

it here. First the time step for particles in the range 250-1000 nm was computed running the code 

described in [7]. For each particle size a set of input data was prepared for the CHODIN code 

described in detail in [7] and [8]. For each particle diameter, hence set of input parameters, a time 

series is generated by simulating Brownian motion in a volume and then calculating the intensity 

of scattered light at a specific angle and distance [7], [8]. Each time series is an input for the 

pattern recognition procedure. 

 For each time series the Power Spectral Density is calculated using the algorithm described in 

section 2.  

 In the next step the frequency domain of the Power Spectral Density is divided into n 

intervals, each containing m values. For each interval the average is calculated resulting in a series 

of n averages, one for each interval, as described in section3.  Ri is calculated for each series using 

(6). Figure 1 illustrates the flow chart of the whole pattern recognition procedure.  

 

 
Figure 1 – the flow chart of the pattern recognition procedure 
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5 Results 

Using the procedures described in section 4, DLS time series were generated for particles having a 

diameter of: 250, 375, 500, 625, 750, 825, 1000 (in nm). Each time series lasted for 1.5 s and were 

generated with 2000 data points per second. Figure 2 presents a sequence of 0.1 s of the time series 

generated for particles with a diameter of 250 nm and Figure 3 for particles with a diameter of 1000 

nm. 

 

Figure 2 - a sequence of 0.1 s of the time series generated for particles with a diameter of 

250 nm 

 

Figure 3 - a sequence of 0.1 s of the time series generated for particles with a diameter of 

1000 nm 
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Examining Figures 2 and 3, we notice, even without any analysis tool, that the fluctuations in 

the time series produced by smaller particles have faster fluctuations with bigger amplitude. In 

order to step further from this quantitative observation, we compute the power spectral density as 

described in section 2. Moreover, we divided the total frequencies range in 10 intervals and 

computed the averages. Figure 4 illustrates the histogram of the averages of the power spectral 

density of the time series generated for particles having a diameter of 250 nm and Figure 5 for 

particles having a diameter of 1000 nm. 

 

 
Figure 4 - The histogram of the power spectral density of the time series generated for 

particles having a diameter of 250 nm 

 

 
Figure 5 - The histogram of the power spectral density of the time series generated for 

particles having a diameter of 1000 nm 

 

 Again, at a qualitative level, we notice differences in the weight of different groups of 

frequencies in the power spectral density for the two power spectral densities.  
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 The next step is to compute the ratio R using equation (6) for the time series mentioned at the 

beginning of this section. Figure 6 illustrates the variation of the ratio R with the diameter used to 

generate the DLS time series.  

 
Figure 6 - The variation of the ratio R with the diameter used to generate the DLS time series  

Examining Figure 6 we notice a monotone increase of the ratio R with the diameter, 

which confirms that smaller particles produce fluctuations in a DLS time series that have 

bigger frequencies. 

6 Conclusion and discussions 

DLS time series were generated in a realistic manner, using CHODIN, which moves each particle 

in suspension in an independent manner. The computer simulation of the Brownian motion of the 

particles in suspension is realistic, as the time step for the Brownian motion is chosen as a the 

value of a simulated diffusion experiment, that is the value that makes the simulated diffusion 

coefficient equal to the computed diffusion coefficient for that particular particle diameter and 

carrier fluid. 

The seven time series present qualitative differences in respect of the fluctuations 

frequencies. The time series generated for smaller particles present faster fluctuations. A simple 

procedure using averages of the power spectral density on several frequency domains and 

computing the ratio R of the first (smallest frequencies) to the last (biggest frequencies) values of 

the averages was used. The results reveal a monotone increase of the ratio with the diameter of the 

suspended particles.  

There are displacements though from the monotone variation, as can be noticed from Fig. 6 

that presents the variation. These displacements might be the effect of the relatively small number 

of particles used in this simulation, 2000, and of the relatively small number of data in a set, 3000.  

Nevertheless, the results are promising and suggest that a simple, easier and requiring a 

smaller amount of computer time, alternative procedure to DLS or Static Light Scattering [9] can 

be imagined, by calibrating a curve as suggested by the plot in Figure 6 and using it for assessing  

the diameter once the ratio R is computed for a recorded time series. The results presented here 

are partial results of the work that is in progress on this subject.  
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