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Abstract 

 

The paper presents an inciting strategy in control, intire developed by the author, PENDULAR control. 

PENDULAR is the mnemonic of Pendulum Efficiency with Nonlinear Dynamics in Achievement of 

Robustness. The main idea is to optimize conventional structures using a nonlinear element on the feed-

back loop. That will transform a conventional control system into a variable structure system (VSS sys-

tem). Having in view the simplicity of the control algorithm, a complete description of these systems, 

the study of stability and the Essential PENDULAR system (EPS) is presented in the paper. Simulation 

examples and experimental results show the efficiency of the PENDULAR concept. 

1 Introduction 

The word PENDULAR comes from the Romanian verb “a pendula” that defines the pendulum move-

ment. PENDULAR (Pendulum Efficiency with Nonlinear Dynamics and Unconventional Law in 

Achievement of Robustness) systems are a class of nonlinear control systems introduced by the author 

in automatic control. Variable structure systems (VSS) are very interesting to be studied because often 

reveal surprises. Usually, the feedback control systems are closing the loop via a negative feedback. In 

this manner it is assumed the fact that the control system is robust (stable and effective even if differ-

ent exogenous will disturb: reference variations, external disturbances, measurement noises, and plant 

uncertainties). The question is if the positive feedback is always bad for a control system?  

A system exhibiting positive feedback, in response to perturbation, acts to increase the magni-

tude of the perturbation.In contrast, a system that responds to a perturbation in a way that reduces its 

effect is said to exhibit negative feedback. Positive feedback often leads to exponential divergences or 

the exponential growth of oscillations. Formally, a system in equilibrium in which there is positive 

feedback to any change from its current state is said to be in an unstable equilibrium. The magnitudes 

of the forces which act to move such a system away from its set point are an increasing function of the 

"distance" from the set point.In the real world, positive feedback loops are always controlled eventual-

20

http://en.wikipedia.org/wiki/Perturbation_of_biological_system_%28Biology%29
http://en.wikipedia.org/wiki/Negative_feedback
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/w/index.php?title=Unstable_equilibrium&action=edit&redlink=1
http://en.wikipedia.org/wiki/Set_point
http://en.wikipedia.org/wiki/Increasing_function


 

 

CCăăttăălliinn  NNiiccoollaaee  CCaalliissttrruu  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ly by negative feedback or limiting effects of some sort. Figure 1 gives a simple view of this concept 

along with scientific terms and symbols.  

Note that the response y is also called system’s behavior or performance. The input u is often called 

the control. 

 
Figure 1. Schematic diagram of a system with its input and output 

 

As seen in Figure 1 one respects the causality principle. 

The output y(t) is related to the input u(t) by the following equation: 

 

( ) ( )y t Tu t                 (1) 

 

where T is an operator applied to u. 

 

In  (1) three elements are involved: the input u, the system represented by the operator T, and the out-

put y. In most of engineering problems two of these three elements are given and we are asked to find 

the third one. This observation is very important because the following three basic engineering prob-

lems arise: 1.The analysis problem. Here, we are given the input  u  and the system  T  and we are 

asked to determine the output y. 2.The synthesis problem. Here, we are given the input  u  and the out-

put  y  and we are asked to determine the system T. 3.The measurement  problem. Here, we are given 

the system  T  and the output y and we are asked to measure the input u. 

 

Definition 1.Given the system  T  and the output y known as the desired response  we are asked to 

find an appropriate input signal u, such that, when this signal is applied to system T, the output of the 

system has to be the desired response y. The appropriate input signal u is called control signal. 

From this definition it appears that the control design problem is in fact a signal synthesis problem: the 

synthesis of the control signal u. As it will be shown later, in practice, the control design problem is 

reduced to that of designing a controller. Control systems can be divided into two categories: open-

loops systems and closed-loops systems. 

 

Definition 2. An open-loop system, as shown in Figure 2,  is a system whose input  u  does not depend 

on the output y, i.e., u is not a function of y. 

 

Definition 3. A closed-loop system, Figure 3,  is a system whose input  u  does depend on the output y, 

i.e., u is a function of y.In control systems, the control signal  u  is not the output of a signal generator, 

but the output of another new additional component that we add to the system under control. This new 

component is called controller and in special cases regulator or compensator. Furthermore, in control 

systems the controller is excited by an external signal r which is called the reference or command sig-

nal. 

 

 

System 

u y 
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Figure 2 Open-loop system 

 

 

 

 

 

 

 

 

Figure 3 Closed-loop system 

 

The reference signal  r  specified the desired performance. That is, in control systems, we aim to de-

sign an appropriate controller such the desired output  y  follows the command signal  r  as close as 

possible. In closed loop systems the controller is excited not only by reference signal r but also by the 

output y. Therefore, in this case the control signal u depends on both r and y.What is characteristic for 

a closed loop system? The answer to this question is very simple: the feedback. In fact, a closed loop 

control system is a feedback system because the following dependence can be written: 

 

( ) ( ( ), ( ( )))u t u r t y u t                (2) 

 

The feedback is a permanent process of comparison between what we want and what we get and tak-

ing decisions. A positive feedback system is shown below. 

 

 

 

 

 

 

 

 

For simplicity and for a clear understanding let consider that controller and systems are amplifiers 

with  k1  and  k2 .gains. Please remark the “+” sign! 

Let suppose even more that  1=k1=k2 

Then: 

2 1
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The relation (3) shows “that disaster” represented by infinity. That is mathematics. Intuitively, analyz-

ing the dynamicity of feedback we have:  

Step 1 .r=1, f=0, u=0, y=0. Step 2 . r=1, f=0, u=1, y=0. Step 3. r=1, f=0, u=1, y=1. Step 4.   r=1, 

f=1, u=1, y=1. Step 5.r=1, f=1, u=2, y=1. Step 6.  r=1, f=1, u=2, y=2. Step 7. r=1, f=2, u=3, y=3 etc. 

 

In the above considered steps r is reference, f feedback, u command, y output. One can see that y in-

creases and tends to infinity! That means instability, chaos, disaster! 

 

Besides, how negative feedback works? Mutatis mutandis the negative feedback system is depicted in 

Figure 4. 

 

 

 

 

 

 

 

 

Figure 4. System with negative feedback 

 

Supposing that the controller and systems are amplifiers with  k1  and  k2 .gains and 1=k1=k2 

 

2 1
2 2 1

2 1

1
( )

1 2

k k
y k u k k r y y r

k k
     


         (4) 

 

Similar: Step 1 r=1, f=0, u=0, y=0. Step 2 r=1, f=0, u=1/2, y=0. Step 3 r=1, f=1/2, u=1/2, y=1/2. Step 4  

r=1, f=1/2, u=1/2, y=1/2  

So, intuitively speaking, after 4 steps stability and stationary state can be obtained! 

Negative feedback is “good” while positive feedback with its cumulative effect is “bad”-this would be 

the natural conclusion expressed in the table below. 

 

GOOD BAD COMPROMISE PERFORMANCE 

Negative feedback Positive feedback 

Variable Structure 

System (VSS) 

Integral index 

IAE, ITAE, ISE, ITSE, etc 

Stability Instability Switching time ? Minimization 

 

In fact, the PENDULAR concept philosophy is very simple. For example, let assume that one analyzes 

"a level control system" with "automation at the level 0". In other terms, a human operator supervises 

the water level in a tank. He turns off the tap whenever the water will reach the reference level. For 

efficiency, and if the tank volume is large, the operator does not proceed like this: turns on the tap on 

the drop by drop position and if the rising level approaches to the reference value turns off the tap. He 

turns on the tap at a large flow and when the level is near the reference level turns off the tap. Large 

System 

u y 

Controller 

r 

_ 
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flow corresponds to positive feedback, small flow (drop by drop) corresponds to negative feedback. 

Extending this very simple idea to the control loops the proposed system starts with positive feedback 

and at a certain time changes his structure becoming a negative (classic) control system. In this man-

ner the PENDULAR control system is defined.The proposed system will start with positive feedback 

and changes his structure becoming a negative (classic) control system at a certain time. 

The paper consists in the following sections: introduction, pendular control system (PCS) (here pendu-

lar control principles are detailed), stability of PCS, Essential PCS (the search for simplicity), experi-

mental results (made on a physical plant) and conclusions. 

2 Pendular control system 

Let the control system depicted inthe figure 5, 

 

 

 

 

 

 

 

 

 

Figure 5 PENDULAR control system 

 

obtained introducing a nonlinear element N on the conventional system feedback loop. The signals r, 

e, u, y,  GR and Gp are respectively the reference, error, command, output, the controller transfer func-

tion and the plant transfer function. N contains a decision block, a switch K. Initially the switch is on 

“+” position. The decision block commands the switch K, ”+” to “-“ for the very first time tc. The 

system changes its structure at time tc,  y(tc)=r. The simplified control loop is depicted in Fig. 3: 

 

 

 

 

 

Figure 3 Simplified control system 

 

where Gd is the open loop transfer function. The nonlinear element N is characterized by: 

 










),(,
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Definition 4. The nonlinear element N with characteristic (5) is called PENDULAR nonlinear ele-

ment. 

N leads the system to the following behaviour: 
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 till the moment tc, rtyryyyy c  )(],,0[,)(~ , system has a positive feedback with closed loop 

tranfer function:  
)(1

)(

)()(1

)()(
)(0

sG

sG

sGsG

sGsG
sG

d

d

pR

pR







,        (6) 

for 
ctt  , system has a negative feedback ( yyy )(~ ) only if rty )( . The closed loop transfer 

function is:
)(1

)(

)()(1

)()(
)(0

sG

sG

sGsG

sGsG
sG

d

d

pR

pR





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.         (7) 

However, 
cttty ),(  represents the differential equation Cauchy problem for the negative feedback 

system (the conventional one), initial condition rty c )( . If for 
cc tt 1
, rty c )(

1

 and for  
1ctt  , 

rty )(  the system will behave as positive feedback system (K comutes “-“ to “+”) and so on.  

In this manner, the controlled variable y, may be considered as output signal for the positive feedback 

system, then at the moment 
ct , after the very first commutation, output signal for the negative feed-

back system; eventually for the moment 
1ct , again output signal for the positive feedback system,etc. 

till the controlled signal variable is stabilized at the value r. 

The pendulum image for the output y comes from the movement between the two classes of differen-

tial equations solutions: S+ (for positive feedback sub-system) and S_(for positive feedback sub-

system) is represented in Fig 5. 

 

 

 

 

 

 

 

 

 

Figure5  The y  oscilatory “movement” scenario 

 

Definition 5. PENDULAR control system (PCS) is the system obtained introducing a PENDULAR 

nonlinear element N on the feedback loop of a classical control system. 

Illustrative example. Let the disturbance p be an exogene signal applied as supplementary input to 

plant. Let assume that r=1, a proportional controller k>0, an integrator as plant and no disturbance 

(p=0). One obtains:
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The system behaviour: 

 ],0[ ctt .System starts with positive feedback ],0[,0)0(, cttykky
dt

dy
 

  

with the solution ],0[,1)( c
kt ttety             (8)  
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From (8), rtytt c   1)( , that means switching “+”to”-“ 

 .ctt  System is with negative feedback:
cc tttykky

dt

dy
 

 ,1)(, ,the solution:

.,1)(
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(9) 

The relation (8) shows that the system was stabilized only after a commutation and stays in this state if 

no disturbance is reported. The system global response is:


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Let suppose that for  
cp tt   a p. step disturbance is applied.  

.,1)(, pp tttypkky
dt
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The derivative sign is given by p sign. For
pp tttytytyp  

,1)()(0)(0 /

  
(13) 

system stays on negative feedback, if:
pp tttytytyp  

,1)()(0)(0 / ,  (14) 

the system changes its structure on positive feedback. 

The differential equation is:
pp ttptypkky

dt
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and the derivative sign depends on  (2k+p).  

For k>0, one obtains the cases 

pp tttyty

typkpk
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The system commutes for p<0, on positive feedback, then on negative feedback  etc. In this case we  

have a infinite number of commutations the output is kept on the reference value r=1. 

  .,1)(2 ptttykp    
The system behaviour is as in the first case.  

 .,1)()(0)(2 /
pp tttytytykp  

 

The system stays on positive feedback the output decreases continuously, system is unstable. In con-

clusion: 1.p>0, system behaviour is identical with the conventional one. 2. 02  pk , the PCS re-

jects the disturbance component instantaneously,  3.p<2k, the system becomes unstable. 

 

Example. PCS with  k=1, at tp=10 sec disturbances  0.5, -0.5 are applied. With  Matlab-Simulink PCS 

response (y) and conventional system (y-)are represented. The command u is also depicted One ob-

serve the chattering fenomenon (Fig.7,8,9) 
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Fig 7. Disturbance applied  p=0.5                                   Fig. 8. Disturbance applied: p=-0.5 

 

3 Stability of PCS 

Definition 6. The complex function F(s) is called real positive if: 

i.F(s) is analytic in  0Re: ss  ii. 0)(Re sF  for every s with 0Re s iii. )()( sFsF   for every s 

with  0Re s .The function F(s) analycity makes possible the replacement of  iii with iii’. F(s) is real 

for every  s positive real. 

 

Popov stability criterion 

Theorem 1 (Popov) The equilibrium state 0x  is globally asymptotic stable for the closed loop sys-

tem (closed through h(t)) if 

1. 0)0( h , 2. 0,0,
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)()1()(   is a real 

positive function. 

Theorem 2 (Sandberg-Zames) 

Let K1 and K2 two constants 
12 KK  . The equilibrium state 0x  is globally asymptotic stable for 

the closed loop system (closed through h(t)) if 
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
  is a real positive function.  

Based on these two therems is very simple to analize the stability of PCS.  

4 Essential  PCS 

Let PCS from Fig.3, with a PI controller and a innertial plant: 
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The closed loop transfer function:
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The system response for r=1: 
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The response time 5% tr- for the conventional system: 

k

T

k

T
teth r

t
T

k

r

r

320ln05.095,0)(  







        

(21) 

The PCS has for t[0,tc] transfer function 
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unstable for k>0, T>0. 

The step response: 
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Time for the first commutation: 
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 “Response time 5%” : 

k

T

k

T
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.           (24) 

From (21) and (24) one obtains 


 rrr tt
k

T

k

T
t 48.4320ln      (25) 

 

Definition 7. PCS that commutes one time when no disturbance applied is called essential pendular 

control system EPCS. 

 

Theorem 3 (PENDULAR essential theorem)The system described above is EPCS. Its step response is 

given by: 
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Demonstration. For ),0[ ctt , the response is given by (25).For ctt   the system response is given by 

the Cauchy problem:
cc ttthkhk

dt

dh
T  

 ,1)(, .The general solution for (26) is: 

Rcttecth c

t
T

k




 ,,1)(            (27) 

with the initial condition from (26) one obtains c=0. Q.E.D.  

In Fig.10 the responses for the classic system (with conventional negative feedback) versus PCS sys-

tem are depicted. 
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The responses were obtained by simulation via Matlab-Simulink environment. For simplicity k=T=1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10  Simulation results for k=T=1 

 

If a step disturbance will be applied (at  t=10 sec p=-1) an excelent behavior is reported for 

EPCS.From Sandberg-Zames theorem and the real positeveness theorem, the stability for PCS is very 

easy to prove. 

 

Theorem 4. 

PCS is globally asymptotic stable if ,
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  is  a real positive function where G is the open loop trns-

fer function. 

Very important observation.Since G is Gr Gp and Gp is known one find the controller Gr. 

Application. EPCS case : Here 
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  and this function is obviously a real positive function. 

5 Experimental setup 

The set-up consists in a Feedback® Discovery Product for temperature and flow control. In this paper 

were made tests only for the flow control.The experiments have been done using the Real-Time Work-

shop from Matlab® Simulink®. The process has been identified as an inertial order system with dead-

time : 
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Because the process is strongly affected by disturbances, the controller used is a PI type 


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Creating a discrete-time model with the sample time of 0.1 seconds, using the PENDULAR control 

method, the below response is obtained. 

 

 

6 Conclusions 

The paper briefly presents the PENDULAR control systems. The PENDULAR control principles are 

sustained by a stability study. Essential PENDULAR Control systems were detailed and the simulation 

results are illustrative.The research is also sustained by experimental results made on different classes 

of systems. This new control methodology seems to have some impact over the control strategies. 
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