

FFoouurrtthh IInntteerrnnaattiioonnaall CCoonnffeerreennccee
MMooddeelllliinngg aanndd DDeevveellooppmmeenntt ooff IInntteelllliiggeenntt SSyysstteemmss
OOccttoobbeerr 2288 -- NNoovveemmbbeerr 11,, 22001155

““LLuucciiaann BBllaaggaa”” UUnniivveerrssiittyy

SSiibbiiuu -- RRoommaanniiaa

Generating a CTL model checker using an attribute grammar

Laura Florentina Stoica, Florin Stoica, Florian Mircea Boian

Abstract

The attribute grammars are presented as a formal approach for model checkers development. Our aim

is to design a CTL model checker from a context-free grammar which generates the language of the

CTL formulas. An attribute grammar may be informally defined as a context-free grammar that has

been extended with set of attributes and a collection of evaluation rules. We are using a CTL attribute

grammar for specifying an operational semantics of the language of the CTL formulas by defining a

translation into the language which describes the set of nodes from the CTL model where the

corresponding CTL formulas are satisfied. We provide a formal definition for an attribute grammar

used as input for Another Tool for Language Recognition (ANTLR) to generate an algebraic compiler.

Also, is presented the technique of implementing the semantic actions in ANTLR, which is the concept

of connection between attribute evaluation in the grammar that generates the language of CTL

formulas and algebraic compiler implementation that represents the CTL model checker.

1 Introduction

The process of verification of a CTL model requires defining a specification which is represented by a

CTL formula, and then determining whether or not that specification it is satisfied in the model.

Such a specification is performed using the CTL formulas language, which is based on well-

established syntactic rules.

Verification of a CTL formula involves a translation of it, from the language in which it was

defined to the language over the set of states of the model. The result of this translation will be the set

of states that satisfy the given formula in the checked CTL model.

Most often the designing a translator is difficult to achieve and require significant efforts for

construction and maintenance.

There are now specialized tools that generate the full code required using a grammar

specification of the source language.

Traditionally, the tools used for the two phases of the translation of the text, lexical analysis and

syntactic analysis were LEX (A Lexical Analyzer Generator) and YACC (Yet Another Compiler

Compiler), or their GNU equivalent, FLEX, BISON, BYACC/J. The disadvantage of the tools LEX

and YACC respectively FLEX and BISON is that they only generate C code and that code is not

always easily understood by the user (complexity induced by the nature of analyzers they generate).

BYACC / J is able to generate Java code, but supported semantic actions are rudimentary.

A high-performance analyzer generator is ANTLR [1] (Another Tool for Language

Recognition), capable of generating C ++, C #, Java or Python code and represents the instrument used

in this article. We will use Java as the target language into which will be developed our own CTL

model checker tool.

130

LLaauurraa FFlloorreennttiinnaa SSttooiiccaa,, FFlloorriinn SSttooiiccaa,, FFlloorriiaann MMiirrcceeaa BBooiiaann

The original contribution of our approach consists in development of the CTL model checker

tool by designing an ANTLR attribute grammar upon which is then generated, using ANTLR, the

entire model checker tool.

The evaluation of a CTL formula is done by automatic activation of the semantic actions

associated with production rules in the process of walking the Abstract Syntax Tree (AST) built into

the process of syntactic analysis of the respective CTL formula, supplied as input for CTL model

checker tool.

2 The CTL model

A model is defined as a Kripke structure M=(S, Rel, P:S→2
AP

) where S is a finite sets of states also

called nodes, Rel⊆S×S is a transition relation denoting a set of directed edges, and P is a labelling

function that defines for each state s S the set P(s) of all atomic propositions from AP that are valid

in s. The transition relation Rel is left-total, i.e., s S s' S such that (s,s') Rel.

For each sS, the notation succ(s)={s'S |(s,s')Rel} is used to denote the set of successors of

s. From definition of Rel, each state from S must have at least one successor, that is sS, succ(s).

A path in M is an infinite sequence of states (s0,s1, s2,…) such that i, i0, we have (si,si+1)Rel.

We use s' succ(s) to denote that there is a relation (s, s') in Rel. The labelling function P maps

for each state s S the set P(s) of all atomic propositions from AP that are valid in s [2].

We use the function P':AP→2
S
, which associates each atomic proposition with the set of states

labeled with that atomic proposition, such that P'(ap)={s S | ap P(s)}, ap AP.

3 CTL syntax and semantics

A CTL formula has the following syntax given in Backus-Naur Form (BNF) [2]:

 :: true|false|ap|(¬ 1)| 1∧2| 1∨2| 1 2| AX 1| EX 1| AG 1| EG 1| AF 1| EF 1|1AU2|

1EU2, ∀apAP.

A CTL specification is interpreted over Kripke structures. The set of all paths through a

Kripke structure is assumed to correspond to the set of all possible computations of a system. CTL

logic is branching-time logic, meaning that its formulas are interpreted over all paths beginning in

a given state (an initial state) of the Kripke structure.

A CTL formula encodes properties that can occur along a particular temporal path as well

as to the set of all possible paths. The CTL syntax include several operators for describing

temporal properties of systems: A (for all paths), E (there is a path), X (at the next moment), F (in

future), G (always) and U (until)

Syntactically, CTL formulas are divided into three categories:

 those whose outermost operator, if any, is not a temporal operator;

 those whose outermost operator is a temporal operator (X (next), U (until), F

(eventually) or G (always)) prefixed with the existential path quantifier E, and

 those whose outermost operator is a temporal operator prefixed with the universal path

quantifier A.

4 Formal specification of the CTL model checker tool

A CTL model checker tool consists of an algebraic compiler CMC:LctlLM where the source language

is the language of CTL formulas and the target language is the language that describes the sets of

nodes (states) of CTL models (represented by Kripke structures) in that these formulas are satisfied.

The effective building of the algebraic compiler requires the implementation of a procedure for

calculating the generalized homomorphism which uniquely associates to any syntactic construction of

the source language a syntactic construction of the target language [3].

131

GGeenneerraattiinngg aa CCTTLL mmooddeell cchheecckkeerr uussiinngg aann aattttrriibbuuttee ggrraammmmaarr

The algebraic compiler CMC translates a CTL formula to the set of nodes S' of a given model M,

over which the CTL formula is satisfied. Therefore, CMC (f)=S' where f is the CTL formula to be

verified and S'={sS| (M,s) ⊨ f}.

In other words, the algebraic compiler receives as input syntactic constructions of the source

language w Lctl which then it maps to syntactic constructions of the target language CMC (w) LM.

CMC is generated from the specifications that define the model checker as a generalized

homomorphism between the algebra of CTL formulas and the algebra of the set of states of the model

[4]. When the homomorphism is evaluated using as input an object of the source algebra (a CTL

formula), the derived operations are evaluated to generate the target image of the respective formula

into destination algebra, the obtained result being the set of states in which formula is satisfied.

In general, a derived operation is a computation associated with an operation of the source

language and specified using syntactic constructions of the target language. Often, the operations and

the elements provided by the target language algebra are not expressive enough to specify the correct

translation which should be performed by the algebraic compiler.

For each function name op from the operator scheme of algebras of the source language Lctl is

created a specification rule as a pair (op, ()MCd op), where ()MCd op

denote the derived operation in

the syntax algebra of the target language LM through which are constructed the target images of

constructions created in the source language by the op.

We note with Octl the finite set of names of the operators of the language Lctl, and we have Octl =

{⊤, ⊥, , , , , AX, EX, AU, EU, EF, AF, EG, AG}.

The set of pairs { op,

()MCd op) | op Octl } represents the compiler specification that can be

used to generate a compiler that will associate the words from the syntax algebra of the source

language Lctl with words from the syntax algebra of the target language LM.

Implementation of the algebraic compiler CMC:Lctl LM which represents the CTL model

checker and practical performs the checking of the CTL formulas, can be described by the following

recursive function:

function CMC (f Lctl) {

if (AL (f)) {

if (f = true) return S;

else if (f = false) return Ø;

else return P'(f);

}

else if (AS(f)= (op, (f1,…, fn)))

return ()
MC

d op (CMC (f1), ... , CMC(fn))

else return error;

}

Fig. 1: The algebraic compiler as recursive function

For formula f, the function A
L
 determines if it belongs to the set of generators of the Lctl

language. If f {⊤, ⊥} {ap | ap AP}, A
L
(f) returns true, else the function returns false. A

S
 is a

mechanism that determines the operation and subformulas which were used to create the formula f.

The components A
L
 şi A

S
 of the algebraic compiler CMC can be implemented by a lexical

analyzer respectively by a parser.

The lexical analyser A
L
 should identify the lexical atoms represented by atomic sentences

correctly constructed, according to a regular grammar that generates the specification language of

atomic propositions.

132

LLaauurraa FFlloorreennttiinnaa SSttooiiccaa,, FFlloorriinn SSttooiiccaa,, FFlloorriiaann MMiirrcceeaa BBooiiaann

The parser A
S
 determines whether the formula used as input for the CTL model checker is

properly constructed and belongs to the language of CTL formulas whose syntax is described using

the formalism of context-free grammars.

The parser A
S
 builds the derivation tree (parsing tree) of the formula into the respective

grammar and thus it can determine for any sub-formula of the given formula which is the operation

and sub-formulas used in its construction.

For the implementation of our own CTL model checker, we exploited the technological

resources provided by the ANTLR system, which enables writing the derivative operations in the

native language in which the whole algebraic compiler was generated (Java, C#, etc.).

To achieve the CMC compiler, we designed the following grammar that generates the Lctl

language (grammar of CTL expressions) and we used ANTLR to generate automatically the

components A
L
 and A

S
 on the basis of this grammar.

grammar CTL;

options {backtrack=true;}

@header {

package ctl;

import java.util.HashMap;

import org.antlr.runtime.*;

import java.util.HashSet;

import java.util.Iterator;

import org.graphstream.graph.*;

import org.graphstream.graph.implementations.*;

}

@lexer::header {package ctl;}

ctlFormula

 : e1=implExpr 'au' e2=implExpr

 | e1=implExpr 'eu' e2=implExpr

 | 'ax' e=implExpr

 | 'ex' e=implExpr

 | 'af' e=implExpr

 | 'ef' e=implExpr

 | 'ag' e=implExpr

 | 'eg' e=implExpr

 | e=implExpr ;

implExpr

 : e1=orExpr ('=>' e2=orExpr)* ;

orExpr

 : e1=andExpr ('or' e2=andExpr)* ;

andExpr

 : e1=notExpr ('and' e2=notExpr)* ;

notExpr

 : 'not' e=atomExp

 | e=atomExp ;

atomExp

 : '(' f=ctlFormula ')'

 | AP

133

GGeenneerraattiinngg aa CCTTLL mmooddeell cchheecckkeerr uussiinngg aann aattttrriibbuuttee ggrraammmmaarr

 | 'true'

 | 'false' ;

AP :

('a'..'z'|'A'..'Z'|'0'..'9'|'!'|'~'|'_'|''|'$'|'%'|'&'|'*'|'?'|'|

 '|'/'|'{'|'}'|'['|']'|'^')+ ;

NEWLINE:'\r'? '\n' ;

WS : (' '|'\t')+ {skip();} ;

Fig. 2: The grammar of the CTL formulas language

It is noted that the precedence of CTL operators is explicitly encoded by the structure of

production rules.

Grammar does not contain the code necessary to implement derivative operations associated

with CTL operators.
From the grammar specification is observed that each CTL operator op Octl has associated a

production rule.

If for the production rule r we note by () ctlop r O the CTL operator for

which was defined the

production r, a concise specification of the algebraic compiler CMC

 is given by the set {r,

(())MCd op r

|r PG}, where (())MCd op r represents the derivative operation corresponding to the production rule

r.

In the ANTLR terminology, for (())MCd op r

we will use the term "semantic action attached to

the production r".

Evaluation of CTL formulas will be accomplished through implementation of the derivative

operations as actions attached to the production rules. Such action can be called semantic action,

because if by example such action is attached to the production:

1 2... nv v v v

the role of respective action is to calculate the semantic value of derivation subtree having root v, ie of

CTL subformula that can be built from the derivation of nonterminal v.

In order to implement the compiler CMC:Lctl LM described in figure 1, we will transform the CTL

grammar into an attribute grammar, by augmenting its production rules with semantic actions.

We present in the following a formal description of attribute grammars and the concrete use of

such a grammar in implementation of the CTL model checker using ANTLR.

5 Verification of CTL models through attribute grammars

An attribute grammar is a context-free grammar augmented with attributes and semantic rules.

Each symbol (terminal or non-terminal) of an attribute grammar has associated a set (possibly

empty) of attributes.

Each attribute has a range of possible values.

Let G=(N,TG,PG,S0) a context free grammar, where N is the set of non-terminal symbols, TG –

the set of terminal symbols, PG – the set of production rules and S0 - the start symbol of the grammar .

We denote by GA=(N,TG,PG,S0,A,as) an attribute grammar built on grammar G by its

augmenting with attributes (A) and semantic rules (actions) (as). A production pPG is of the form:

0 1 2... pnX X X X where np 1, 0X N şi k GX N T for 1 k np. The derivation tree of a

sequence from the language generated by the grammar has the following properties:

 Each leaf node is labelled with a terminal symbol from the set TG;

134

LLaauurraa FFlloorreennttiinnaa SSttooiiccaa,, FFlloorriinn SSttooiiccaa,, FFlloorriiaann MMiirrcceeaa BBooiiaann

 Each inner node t corresponds to a production pPG, and if the production is of the form

0 1 2... pnX X X X , with the meaning of the symbols described above, then t is labelled

with the symbol 0X and has np child nodes labelled with 1 2, ,...,
pnX X X from the left to the

right.

For any non-terminal symbol X N attributes can be divided into:

- Synthesized attributes if their values are computed using attributes of child nodes. We

denote by S(X) the set of synthesized attributes of non-terminal X.

- Inherited attributes if their values are computed using the values of attributes attached to the

parent or siblings nodes. The set of inherited attributes of non-terminal X is denoted by

M(X).

The set of all attributes of non-terminal X is denoted by A(X) and is equal to:

() () ()A X S X M X

With these notations, the set of attributes of the grammar GA is defined as:

()
X N

A A X

Considering the set of production rules of the form PG = {p1, …, pn}, with 1n , we denote by

as(j) = 1{ (), ... , ()}jii

j jaction action the set of semantic actions attached to the production pj, for each

j{1, …, n}. With these notations, the set of semantic actions of the grammar GA is defined as:

1

()
j n

as as j

The values of all attributes of grammar symbols that appear in the derivation tree of a sequence

from the language generated by the grammar are determined by the semantic actions associated with

productions of the grammar that are involved in the process of derivation of the respective sequence.

These values are effectively calculated in the process of analysis, through invoking the semantic

actions by the parser, generally at the moment of recognition of the next production rule used in the

derivation process.

The attribute grammar used in the implementation of the CTL model checker will be denoted by
CTL

AG and has the following features:

 () (),A X S X X N

– all attributes are synthesized attributes;

 | () | 1,A X X N – any non-terminal symbol X has a single attribute, denoted by

()a X .

 |as(j)|=1, for each j{1, …, n} – each production rule has attached a single semantic action,

as(j) = { ()}jaction

 We consider that CTL model is given in the form of a Kripke structure: M=(S, Rel,

P:S→2
AP

), and the CTL attribute grammar corresponding to the model M is:
,

CTL

A MG =(N,

TG,PG,S0,A,as). Then GAP T (the atomic propositions are terminal symbols of the

attributive grammar). Each atomic proposition ap AP has associated a single attribute

denoted by ()a ap , such as | () | 1 GA ap ap AP T . The set of attributes of the CTL

grammar is extended to:

135

GGeenneerraattiinngg aa CCTTLL mmooddeell cchheecckkeerr uussiinngg aann aattttrriibbuuttee ggrraammmmaarr

(()) (()) ({ ()}) ({ ()})
G GX N ap T x N ap T

A A X A ap a X a ap

Also, each atomic proposition Gap AP T has associated the semantic action ()apaction

with the purpose of calculating the value of attribute ()a ap . The set of semantic actions of

the CTL attribute grammar becomes:

1

({ ()}) ({ ()})
G

j ap

j n ap T

as action action

 For any symbol { , },x N AP true false
we denote by ()v x the value of attribute

()a x and we have ()v x S (the value of the respective attribute is a subset of the set of

states of the model M).

 The evaluation of the attributes of the non-terminal symbols is context-dependent: if for

rewriting of symbol X N was used the production ,Xi then the value of attribute of non-

terminal X in the respective context is:

() ()
Xi

v X action

 The evaluation of terminal symbols is context-free:

() () { | ()}ap Gv ap action s S ap P s ap AP T , ()v true S and ()v false .

Because often the model M is implicit, we write CTL

AG instead of
,

CTL

A MG .

A CTL formula f is syntactically correct if and only if there is derivation:

ctlFormula

⇒ f

where we suppose that ctlFormula = S0 (the start symbol of the CTL

AG grammar). The derivation tree of

the formula f has its border composed by terminal symbols that appear in the formula f.

We consider that derivation ctlFormula

⇒ f has a length k. Then there is the succession of

direct derivations 0f

⇒ 1f

⇒ 2f …

⇒ kf , where 0f = ctlFormula, kf = f and represents the number

of production rule involved in the direct derivation l, where {1,..., }l k .

If we note by ()jaction the name of the semantic action attached to the production {1, ..., },j n

the parser will call, at the same time with building the tree analysis of the formula f, the semantic

actions attached to production rules from the derivation:

ctlFormula

⇒ f

in the following order:

1
()iaction ,

2
()iaction , …, ()

ki
action .

136

LLaauurraa FFlloorreennttiinnaa SSttooiiccaa,, FFlloorriinn SSttooiiccaa,, FFlloorriiaann MMiirrcceeaa BBooiiaann

Fig. 3: A syntax subtree for the formula f

Assuming that in figure 3 is represented a subtree of the derivation tree built for the formula f,

where A, B, C are non-terminals of the grammar and ,ai ,bi ci are the numbers of the production rules

used in rewriting of the respective non-terminals, the function ()
aiaction will contain calls of actions

()
biaction and respectively ()

ciaction . An action will return without a call to another action only when

it is attached to a terminal symbol. In this case, the respective action carries out the evaluation of that

symbol.

In the case of the CTL model M=(S,Rel,P:S→2
AP

), for the symbol true will be returned the

whole set of states, S. For false will be returned the empty set , and for some symbol ap from the set

AP will be returned the set of states { | ()}s S ap P s .

For a given formula f Lctl, in the function CMC(f) the parser A
S
 identifies the first production

of grammar used in derivation:

X0

⇒ f

Assuming that production is r: 0 0 1 1 2 ... ,n nX t X t X X t CMC(f) will call the derived operation

associated with production r, (())MCd op r , and will store the result in the meta-variable $set, as

follows:

$set = (())MCd op r ($a1.set ,… $an.set)

where $ai.set are semantic evaluation of non-terminals Xi, 1 i n , by which rewriting are obtained

the subformulas f 1,…, f n of f. These evaluations are performed recursively, and we have:

$ai.set = CMC (f i), 1 i n

If we denote by G=(N,TG,PG,S0) the context-free grammar that generates the CTL formulas

language, with production set in the form of PG = {p1, …, pn}, 1n , a concise specification of the

compiler CMC is given by the set of pairs {pi,
(())MC id op p | 1 i n }, where (())MC id op p

is the

derived operation corresponding to the production pi and op(pi) is the CTL operator for which was

defined the production pi, 1 i n .

Automatic generation of the CTL model checker from the above specification is accomplished

in ANTLR by building an attribute grammar ,

CTL

A MG =(N,TG,PG,S0,A,as) in the meta-description

language of ANTLR grammars, with the following properties:

 The grammar productions are those specified in the Section 4.

 Attributes associated to the generators of language Lctl have the following values:

137

GGeenneerraattiinngg aa CCTTLL mmooddeell cchheecckkeerr uussiinngg aann aattttrriibbuuttee ggrraammmmaarr

() () '(),ap Gv ap action P ap ap AP T

() ()truev true action S

() ()falsev false action

 For production pi: 0 0 1 1... ,n nX t X t X t

the attribute value of non-terminal X0 is

calculated as:

0() ()iv X action (())MC id op p (1(),..., ()nv X v X).

Using the notational descriptions of the meta-description language used in specification

of the ANTLR attribute gramars, equality becomes:
 $set = (())MC id op p ($a1.set ,… $an.set).

The components A
L
, A

S
 of the algebraic compiler are automatically generated by ANTLR,

using as input the unique file containing the definition of the grammar ,

CTL

A MG .

In the ANTLR grammar, the meta-variables of form $set are used to store the attribute values of

grammars symbols (N TG). At the time of construction of the derivation tree, for meta-variables that

appear in the definition of a semantic action attached to a production used in the derivation process,

ANTLR generates code to invoke the semantic actions of productions used in rewriting of non-

terminals appearing in the right member of the corresponding production.

The role of semantic actions associated with the production rules of the ANTLR grammar is to

calculate and return the attribute values of non-terminal symbols from the left member of respective

productions (nonterminals rewrited by these productions).

For example, for the rule atomExp:

atomExp returns [HashSet set]

:

…

;

the generated code has the following form (simplified):

public HashSet atomExp () throws RecognitionException

{

HashSet set = null; // Return value, referenced in

... // the definition file of grammar

return set; // by $set

}

Verification of the given formula f involves the building of the derivation ctlFormula

⇒ f (and

hence the corresponding derivation tree) and ends when is returned the attribute value of the start

symbol of the grammar ()v ctlFormula S, which represents the set of all states from S which satisfy

the formula f in the given model M.

Implementing a model checker based on an attributive grammar requires a detailed description

of its semantic actions.

In figure 4 is presented the formal definition of the derivative operation ()MCd AG .

In our approach, the implementation of the CTL temporal operators is based on two functions

 ∀
 , defined as:

 ∀() * | () ⊆ + , respectively

 () * | () +

138

LLaauurraa FFlloorreennttiinnaa SSttooiiccaa,, FFlloorriinn SSttooiiccaa,, FFlloorriiaann MMiirrcceeaa BBooiiaann

where succ(s)={s'S|(s,s')Rel} represents the set of successor states of the state s in M.

The functions ∀, are implemented in Java code, specifications being included in the

single definition file of the CTL grammar.

The advantage of this solution is that entire algebraic compiler code is generated in a single step

without the need for previous pre-processing.

The semantic action of production corresponding to the AG operator implements the derivative

operation ()MCd AG . The function ∀() is dependent on the verified CTL model, so that the model

must be accessible to the algebraic compiler when verifying a CTL formula, in the form of internal

data structures required by the call ∀().
The argument of the derived operation, $set1, represents the calculated image (satisfaction set)

of CTL sub-formula to which is applied the AG operator.

The value returned by the semantic action is stored in the variable $set to be propagated in the

analysis / evaluation process of the CTL formula for which the process of verification was launched:

$set = ()MCd AG ($set1).

ctlFormula: $set 'ag' implExpr: $set1

{ Set Z, Z’;

 Z:=; Z':= $set1;

 while ((Z=Z')) {

 Z:=Z'; Z':=Z' ∀();
 }

 $set :=Z';

}

Fig. 4: The formal definition of the derivative operation ()MCd AG

For the CTL operator AG, the corresponding action included in our ANTLR grammar of

CTL language is detailed in figure 5.

private HashSet PreAll(HashSet Z) {

 HashSet rez = new HashSet();

 for (Node n1 : model) {

 Iterator<Edge> it =

 n1.getLeavingEdgeIterator();

 HashSet succ = new HashSet();

 while (it.hasNext()) {

 Edge e = it.next();

 Node n2 = e.getTargetNode();

 succ.add(n2.getIndex());

 }

 if (Z.containsAll(succ)) {

 rez.add(n1.getIndex());

 }

 }

 return rez;

}

ctlFormula returns [HashSet set]

@init { }

: 'ag' e=implExpr {

 HashSet rez = new HashSet();

 HashSet rez1 = new HashSet($e.set);

 while (!rez.equals(rez1)) {

 rez.clear();

139

GGeenneerraattiinngg aa CCTTLL mmooddeell cchheecckkeerr uussiinngg aann aattttrriibbuuttee ggrraammmmaarr

 rez.addAll(rez1);

 HashSet tmp = PreAll(rez1);

 rez1.retainAll(tmp);

 }

 $set = rez1;

}

Fig. 5: Implementation of the AG operator in ANTLR

6 Example

It is noted that for some CTL formula f, the syntactic analysis is top-down but evaluation of the

formula is at the end of successive function calls using a stack of execution, so it is made in a bottom-

up fashion.

The evaluation of the formula f is practically accomplished by walking the derivation tree in a

bottom-up manner, starting from the leaves and eventually going to the root of the tree.

In each intermediate node, the semantic evaluation of the child nodes are used to compute the

semantic value of CTL subformula associated with that intermediate node. The calculation algorithm

is determined by the semantic of the CTL operator that appears in the rule of rewriting the non-

terminal corresponding to the respective intermediate node.

For the model described in the figure 6:

Fig. 6: The CTL model of mutual exclusion of two processes, build with CTL Designer

the parse tree constructed when analyzing the formula ag (not (C1 and C2)) is presented in figure 7,

generated using ANTLRWorks [5]:

140

LLaauurraa FFlloorreennttiinnaa SSttooiiccaa,, FFlloorriinn SSttooiiccaa,, FFlloorriiaann MMiirrcceeaa BBooiiaann

Fig. 7: The parse tree for formula ag (not (C1 and C2))

The evaluation of the verified formula is made bottom-up, as we can see from the output of

our CTL model checker:

141

GGeenneerraattiinngg aa CCTTLL mmooddeell cchheecckkeerr uussiinngg aann aattttrriibbuuttee ggrraammmmaarr

Fig. 8: Verification of formula ag (not (C1 and C2)) in CTL Designer [6]

7 Conclusions

We enumerate some of the arguments that recommend the utilization of the ANTLR attribute

grammars in implementing model checker tools:

- The verified model can be encoded and accessed by classes of objects in the chosen target

language (C++, Java, C#, Objective C, Python) directly in the attribute grammar

specification file.

- For the implementation of the semantic actions in ANTLR, we can exploit the full power of

an advanced programming language (Java, C #, etc.).

- We can specify multiple target languages to generate the model checker tool, and the

semantic actions can be implemented by efficient code, taking into account the features of

the chosen language.

- The proposed methodology has a generic character since it can be applied to generate model

checkers for different temporal logics (CTL, ATL, LTL, etc.).

As future work, we will investigate an alternative approach to generate a CTL model checker

using the concept of labelled stratified graph (LSG) [7].

We intend to use the concept of accepted structured path [8] over a stratified graph in order to

build a parser for the language of CTL formulas. Also, the inference process [9] developed in a

stratified graph can be used to implement a model checker: a CTL formula is transposed in a labelled

graph in order to construct inferences based on the given representations, providing as result the set of

states where the given CTL formula is satisfied.

References

[1] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. Version: 2007-3-20.

[2] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge

University Press, pages 1–405, 2000.

[3] E.V. Wyk. Specificaion Languages in Algebraic Compiler. CitiSeerX, pages 1–38, 2000.

142

LLaauurraa FFlloorreennttiinnaa SSttooiiccaa,, FFlloorriinn SSttooiiccaa,, FFlloorriiaann MMiirrcceeaa BBooiiaann

[4] T. Rus, E. Van Wyk and T. Halverson. Generating model checkers from algebraic specifications. Springer,

Formal Methods în System Design. Vol. 20, Issue 3, pages 249–284, 2002.

[5] Jean Bovet. ANTLRWorks: The ANTLR GUI Development Environment,

http://www.antlr.org/works/index.html

[6] L. F. Cacovean, F. Stoica, WebCheck – ATL/CTL model checker tool, http://use-it.ro

[7] Daniela Dănciulescu, Formal Languages Generation in Systems of Knowledge Representation based on

Stratified Graphs, INFORMATICA 2015, vol. 26, no. 3, pp. 407-417, ISSN 0868-4952 (2015)

[8] Daniela Dănciulescu, Mihaela Colhon, Splitting the structured paths in stratified graphs. Application in

Natural Language Generation, Analele Științifice ale Universității Ovidius Constanța, Seria Matematică,

vol. 22, no. 2, pp.59-69, ISSN: 1224-1784 (2014)

[9] Daniela Dănciulescu, Systems Of Knowledge Representation Based On Stratified Graphs And Their

Inference Process, 9th International Conference of Applied Mathematics, Abstracts and Pre-Proceedings,

Baia Mare 25-28 September (2013)

Laura Florentina STOICA

Faculty of Science

“Lucian Blaga” University
Department of Mathematics and Informatics

5-7 Dr. Ratiu Street, Sibiu

ROMANIA
E-mail: laura.cacovean@ulbsibiu.ro

Florin STOICA

Faculty of Science

“Lucian Blaga” University
Department of Mathematics and Informatics

5-7 Dr. Ratiu Street, Sibiu

ROMANIA
E-mail: florin.stoica@ulbsibiu.ro

Mircea Florian BOIAN

Faculty of Mathematics and Computer

Science
“Babes Bolyai” University

1 M. Kogalniceanu Street, Cluj-Napoca

ROMANIA
E-mail: florin@cs.ubbcluj.ro

143

http://www.antlr.org/works/index.html
http://use-it.ro/
mailto:laura.cacovean@ulbsibiu.ro
mailto:florin.stoica@ulbsibiu.ro
mailto:florin@cs.ubbcluj.ro

