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Dănciulescu Daniela, Nicolae Ţăndăreanu

Abstract

The concept of stratified graph introduce some method of knowledge representation ([7],
[4]). The inference process developed for this method uses the paths of the stratified graphs,
an order between the elementary arcs of a path and some results of universal algebras. The
order is defined by considering a structured path instead of a regular path. In this pa-
per we give two splitting properties. First property shows that every structured path can
be uniquely decomposed by means of two structured subpaths. A similar decomposition
is shown for the accepted structured paths. The decomposition of the accepted structured
paths is used to define the inference process allowed by a stratified graph. This process is
restated in the vision of the new results presented in this paper. This description is included
in a separate section, where we define the concept of knowledge processing system based on
stratified graphs. We give a formalism for the inference process in such systems.
Keywords: Peano algebra, labeled graph, stratified graph, structured path, accepted struc-
tured path, inference process

1 Introduction

The concept of stratified graph provides a method of knowledge representation. This concept
was introduced in paper [7]. The resulting method uses concepts from graph theory redefined
in the new framework and elements of universal algebra. Intuitively, a stratified graph is built
over a labeled graph G0, placing on top a subset of a Peano algebra generated by the label set
of G0.

The concept of structured path over a labeled graph was introduced in [4]. In the same paper
was introduced the concept of accepted structured path over a stratified graph. The inference
process was defined by means of a decomposition property of the accepted structured path,
described in an intuitive manner in [4].

In this paper we define in a mathematical manner the concept of decomposition and obtain
two splitting properties: one for a stratified graph and the other for an accepted structured
path.

The inference process developed by a stratified graph is based on the decomposition of
an accepted structured path into two accepted structured paths. These two components are
subpaths of the initial path and the decomposition is iterated until we obtain atomic accepted
paths. A subpath of a path defines a continuous path which consists of different kinds of
elementary arcs of the initial path. Further we use the order induced by the structure of the
accepted path and some meaning attached to every elementary arc.
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The paper is organized as follows: Section 2 contains basic concepts as labeled graph and
stratified graph. In section 3 we define the concept of structured path in a labeled graph, the
concept of accepted structured path in a structured graph and we establish an useful result
concerning the existence of some morphism of universal algebras obtained from the labels of
the structured paths to Peano algebra generated by the elementary labels the structured graph
(Proposition 4); Section 4 treats two decompositions of structured paths and accepted structured
paths respectively; Section 5 defines the concepts of knowledge processing system based on
stratified graphs and we give the formalism of the coresponding inference process. Last section
includes conclusions of our study.

2 Basic concepts

We begin this section by a short presentation of two concepts: labeled graph and stratified
graph. Various papers ([4], [3], [6]) present in their introduction these concepts. By a labeled
graph we understand a tuple G = (S,L0, T0, f0), where S is a finite set of nodes, L0 is a set of
elements named labels, T0 is a set of binary relations on S and f0 : L0 −→ T0 is a surjective
function. Such a structure admits a graphical representation. Each element of S is represented
by a rectangle specifying the corresponding node. We draw an arc from x1 ∈ S to x2 ∈ S and
this arc is labeled by a ∈ L0 if (x1, x2) ∈ f0(a). This case is shown in Figure 1.

x1 x2-
a

Figure 1: A labeled arc

We consider a symbol σ of arity 2 and take the sets defined recursively as follows:{
B0 = L0

Bn+1 = Bn ∪ {σ(x1, x2) | (x1, x2) ∈ Bn ×Bn}, n ≥ 0

where L0 is a finite set that does not contain the symbol σ. The set B =
⋃
n≥0Bn is the Peano

σ -algebra ([1]) generated by L0. We can understand that σ(x, y) is the word σxy over the
alphabet L0 ∪ {σ}. Often this algebra is denoted by L0.

By Initial(L0) we denote a collection of subsets of B satisfying the following conditions:
M ∈ Initial(L0) if

• L0 ⊆M ⊆ B

• if σ(u, v) ∈M , u ∈ L0, v ∈ L0 then u ∈M and v ∈M

We define the mapping prodS : dom(prodS) −→ 2S×S as follows:

dom(prodS) = {(ρ1, ρ2) ∈ 2S×S × 2S×S | ρ1 ◦ ρ2 6= ∅}

prodS(ρ1, ρ2) = ρ1 ◦ ρ2
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where ◦ is the usual operation between the binary relations:

ρ1 ◦ ρ2 = {(x, y) ∈ S × S | ∃z ∈ S : (x, z) ∈ ρ1, (z, y) ∈ ρ2}

We denote by R(prodS) the set of all the restrictions of the mapping prodS :

R(prodS) = {u | u ≺ prodS}

where u ≺ prodS means that dom(u) ⊆ prodS and u(ρ1, ρ2) = prodS(ρ1, ρ2) for (ρ1, ρ2) ∈
dom(u).

If u is an element of R(prodS) then we denote by Clu(T0) the closure of T0 in the partial
algebra (2S×S , {u}). This is the smallest subset Q of 2S×S such that T0 ⊆ Q and Q is closed
under u. It is known that this is the union

⋃
n≥0Xn, where{

X0 = T0
Xn+1 = Xn ∪ {u(ρ1, ρ2) | (ρ1, ρ2) ∈ dom(u) ∩ (Xn ×Xn)}, n ≥ 0

If L ∈ Initial(L0) then the pair (L, {σL}), where

• dom(σL) = {(x, y) ∈ L× L | σ(x, y) ∈ L}

• σL(x, y) = σ(x, y) for every (x, y) ∈ dom(σL)

is a partial algebra. This property is used to define the concept of stratified graph.

Consider a labeled graph G0 = (S,L0, T0, f0). A stratified graph ([7]) G over G0 is a tuple
(G0, L, T, u, f) where

• L ∈ Initial(L0)

• u ∈ R(prodS) and T = Clu(T0)

• f : (L, {σL}) −→ (2S×S , {u}) is a morphism of partial algebras such that f0 ≺ f , f(L) = T
and if (f(x), f(y)) ∈ dom(u) then (x, y) ∈ dom(σL)

The existence of this structure, as well as the uniqueness is proved in [7]:

Proposition 1 For every labeled graph G0 = (S < L), T0, f0) and every u ∈ R(prodS) there is
just one stratified graph (G0, L, T, u, f) over G0.

3 Accepted structured paths

We consider a labeled graph G0 = (S,L0, T0, f0). A regular path over G0 is a pair
([x1, . . . , xn+1], [a1, . . . , an]) such that (xi, xi+1) ∈ f0(ai) for every i ∈ {1, . . . , n}.

Definition 1 We denote by STR(G0) the smallest set satisfying the following conditions:

• For every a ∈ L0 and (x, y) ∈ f0(a) we have ([x, y], a) ∈ STR(G0).

• If ([x1, . . . , xk], u) ∈ STR(G0) and ([xk, . . . , xn], v) ∈ STR(G0) then ([x1, . . . , xk,
. . . , xn], [u, v]) ∈ STR(G0).
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The concept of structured path introduces some order between the arcs taken into consideration
for an regular path. To highlight the role of structured paths we consider the following example
presented in Figure 2. We relieved here two structured paths: one of them is denoted by (1)
and represents the structured path ([x1, x2, x3, x4], [[a1, b1], c1]); the other is denoted by (2) and
represents the structured path ([x1, x2, x3, x4], [a1, [b1, c1]]). In order to explain in an intuitive
manner the inference process we assign an algorithm to every arc symbol. For example, consider
the following simple case: each arc symbol designates the following algorithm:
Alg

Input: x, y

Output: If x ≥ y then x+ y; otherwise x− y
end

Each node of the labeled graph represents a natural number. In order to make a choice we
take x1 = 7, x2 = 2, x3 = 5 and x4 = 4. For example the output of the algorithm for x1 and x2
is 9. We write Alg(x1, x2) = 9. For the paths (1) and (2) from Figure 2 we obtain

Alg(Alg(x1, x2), Alg(x2, x3)) = 14; Alg(Alg(Alg(x1, x2), Alg(x2, x3)), x4) = 18

Alg(x2, x3) = −3; Alg(x3, x4) = 9; Alg(Alg(x2, x3), Alg(x3, x4)) = −12;

Alg(x1, Alg(Alg(x2, x3), Alg(x3, x4))) = Alg(7,−12) = −5

Thus the inference process gives 18 for the first path and −5 for the second path.

x1 -
a1 x2 -

b1 x3 -
c1 x4

(1)

(1)

(2)

(2)

Figure 2: Intuitive representation of structured paths

Let us consider the set L(X) = {[x1, . . . , xn] | n ≥ 1, xi ∈ X, i = 1, . . . , n}, the set of all
nonempty lists over X. We denote first([x1, . . . , xn]) = x1 and last([x1, . . . , xn]) = xn.

We define the mapping

⊗ : STR(G0)× STR(G0) −→ STR(G0)

as follows:
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• dom(⊗) = {((α1, u1), (α2, u2)) | (α1, u1) ∈ STR(G0), (α2, u2) ∈ STR(G0),
last(α1) = first(α2)}

• If ([x1, . . . , xk], u) ∈ STR(G0) and ([xk, . . . , xn], v) ∈ STR(G0) then

([x1, . . . , xk], u)⊗ ([xk, . . . , xn], v) = ([x1, . . . , xn], [u, v])

Proposition 2 Consider a labeled graph G0 = (S,L0, T0, f0) and the set

K(G0) = {([x, y], a) | (x, y) ∈ f0(a)} (1)

The set STR(G0) is the ⊗-Peano algebra generated by K(G0).

Proof. From Definition 1 we deduce that STR(G0) is the smallest set containing K(G0) and
closed under ⊗ operation. It follows that STR(G0) is the ⊗-Peano algebra generated by K(G0).

We define

STR2(G0) = {w | ∃(α,w) ∈ STR(G0)}

In fact, STR2(G0) represents the projection of the set STR(G0) on the second axis: in a classical
notation we write STR2(G0) = pr2(STR(G0)).

We define the mapping ∗ : STR2(G0)× STR2(G0) −→ STR2(G0) as follows:

• dom(∗) = {(β1, β2) | ∃α1, α2 : (α1, β1) ∈ STR(G0), (α2, β2) ∈ STR(G0),
last(α1) = first(α2)}

• If β1, β2 ∈ dom(∗) then β1 ∗ β2 = [β1, β2]

Remark 1 The pair STR2(G0), ∗) becomes a partial algebra.

Proposition 3 STR2(G0) is the ∗-Peano algebra generated by L0.

Proof. The set STR(G0) is the ⊗-Peano algebra generated by K(G0). This means that
STR(G0) =

⋃
n≥0Mn, where{
M0 = K(G0)
Mn+1 = Mn ∪ {γ | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), γ = α⊗ β} (2)

It follows that

STR2(G0) = pr2STR(G0) = pr2(
⋃
n≥0

Mn) =
⋃
n≥0

pr2Mn =

pr2M0 ∪
⋃
n≥0

pr2Mn+1 = pr2K(G0) ∪
⋃
n≥0

pr2Mn+1 =

therefore

STR2(G0) = L0 ∪
⋃
n≥0

pr2Mn+1 (3)

Based on (2) we obtain

pr2Mn+1 = pr2Mn ∪ pr2Xn (4)
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where Xn = {γ | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), γ = α⊗ β}.
From (4) we find that

pr2Mn+1 = pr2Mn ∪ {pr2γ | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), γ = α⊗ β} (5)

Consider an element γ ∈ Xn. There are (α, β) ∈ dom(⊗)∩(Mn×Mn) such that γ = α⊗β. This
means that α = ([x1, . . . , xk], u1), β = ([xk, . . . , xm], v1) and γ = ([x1, . . . , xk, . . . , xm], [u1, v1]).
It follows that pr2γ = [u1, v1] and by the definition of the operation ∗ we have [u1, v1] = u1 ∗ v1.
Thus, if γ = α⊗ β, where (α, β) ∈Mn ×Mn then pr2γ = pr2α ∗ pr2β. This property allows to
rewrite (6) as follows

pr2Mn+1 = pr2Mn ∪ {w | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), w = pr2α ∗ pr2β} (6)

Let us denote Yn = pr2Mn for every n ≥ 0. We have Y0 = pr2M0 = pr2K(G0) = L0 and from
(6) we obtain Let us prove that

{w | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), w = pr2α ∗ pr2β} =

{ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v} (7)

Take w = pr2α ∗ pr2β for some (α, β) ∈ dom(⊗) ∩ (Mn × Mn). It follows that α =
([x1, . . . , xk], pr2α), β = ([y1, . . . , yr], pr2β and xk = y1. Denote pr2α = u and pr2β = v. Because
α = ([x1, . . . , xk], pr2α) ∈Mn we obtain u = pr2α ∈ pr2Mn. Similarly we have v ∈ pr2Mn. But
pr2Mn = Yn, therefore u ∈ Yn and v ∈ Yn. We have w = u ∗ v therefore we proved the inclusion

{w | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), w = pr2α ∗ pr2β} ⊆
{ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v} (8)

We prove now the converse inclusion. To prove this property we consider an element ω =
u ∗ v for some (u, v) ∈ (Yn × Yn) ∩ dom(∗). But Yn = pr2Mn and u ∈ Yn. It follows that
there is α = ([x1, . . . , xk], u) ∈ Mn and β ∈ ([y1, . . . , ym], v) ∈ Mn xk = y1. We deduce that
(α, β)dom(⊗) ∩ (Mn ×Mn) such that ω = pr2α ∗ pr2β. This shows that

{w | ∃(α, β) ∈ dom(⊗) ∩ (Mn ×Mn), w = pr2α ∗ pr2β} ⊇
{ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v} (9)

Now, from (8) and (9) we obtain (7).
From (6) and (7) we obtain

pr2Mn+1 = pr2Mn ∪ {ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v}

equivalently we can write that

Yn+1 = Yn ∪ {ω | ∃(u, v) ∈ (Yn × Yn) ∩ dom(∗) : ω = u ∗ v} (10)

From Y0 = L0 and (10) we obtain that
⋃
n≥0 Yn = L0, where L0 is taken under operation ∗.

From (3) we obtain STR2(G0) =
⋃
n≥0 Yn, therefore STR2(G0) = (L0)∗ and the proposition is

proved.

Proposition 4 The mapping h : (STR2(G0), ∗) −→ ((L0)σ, σ) defined by

h(p) =


p if p ∈ L0

σ(h(u), h(v)) if p = [u, v], u ∈ STR2(G0), v ∈ STR2(G0)

is a morphism of partial algebras. In other words, the diagram from Figure 3 is commutative.
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(L0)σ × (L0)σ -
σ

(L0)σ

STR2(G0)× STR2(G0) -
∗

STR2(G0)

? ?

h× h h

Figure 3: Commutative diagram

Proof. Consider (u, v) ∈ dom(∗). There are ([x1, . . . , xk], u) ∈ STR(G0) and
([xk, . . . , xn], v) ∈ STR(G0). If this is the case then u ∗ v = [u, v] ∈ STR2(G0) and
h([u, v]) = σ(h(u), h(v)). Thus the diagram is commutative.

Definition 2 We define the set ASP (G) as follows: ([x1, . . . , xn+1], c) ∈ ASP (G) if and only if
([x1, . . . , xn+1], c) ∈ STR(G0) and h(c) ∈ L.
An element of ASP (G) is named accepted structured path over G.

4 Splitting properties

In this section we obtain two splitting properties: one of them refers to the decomposition of
a structured path; the other gives the decomposition of an accepted structured path. The first
splitting property is used to prove the second property.

Proposition 5 (splitting property I)
If ([x1, . . . , xn+1], c) ∈ STR(G0) and n ≥ 2 then there are u, v ∈ STR2(G0) and k ∈ {2, . . . , n},
uniquely determined, such that

c = [u, v]
([x1, . . . , xk], u) ∈ STR(G0)
([xk, . . . , xn+1], v) ∈ STR(G0)

Proof. We denote by (L0)∗ the *-Peano algebra generated by L0. By Proposition 3 we have
STR2(G0) = (L0)∗. In a similar manner we consider the ⊗-Peano algebra generated bu K(G0),
denoted by (K(G0))⊗. By Proposition 2 we have STR(G0) = (K(G0))⊗.
Take ([x1, . . . , xn+1], c) ∈ STR(G0), n ≥ 2. This implies that c ∈ STR2(G0) = (L0)∗,
therefore there are u, v ∈ STR2(G0), uniquely determined, such that c = [u, v]. Thus
([x1, . . . , xn+1], [u, v]) ∈ STR(G0) = (K(G0))⊗. It follows that there are the elements, uniquely
determined, d1 = ([y1, . . . , ys], γ1) ∈ STR(G0), d2 = ([z1, . . . , zp], γ2) ∈ STR(G0) such that
(d1, d2) ∈ dom(⊗) and

([x1, . . . , xn+1], [u, v]) = d1 ⊗ d2 (11)

From (d1, d2) ∈ dom(⊗) we deduce that ys = z1 and

d1 ⊗ d2 = ([y1, . . . , ys, z2, . . . , zp], [γ1, γ2]) (12)

From (11) and (12) we deduce that

[x1, . . . , xn+1] = [y1, . . . , ys, z2, . . . , zp] (13)
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[u, v] = [γ1, γ2]

We have u, v, γ1, γ2 ∈ STR2(G0)), STR2(G0) is a ∗ -Peano algebra and from [u, v] = [γ1, γ2] we
deduce u = γ1 and v = γ2. From (13) we deduce that n+1 = s+p−1 and x1 = y1, . . ., xs = ys,
xs+1 = z2, . . ., xn+1 = zp. It follows that d1 = ([x1, . . . , xs], u) and d2 = ([xs, . . . , xn+1], v).
But d1 ∈ STR(G0) and d2 ∈ STR(G0). We remark that s is uniquely determined. Thus the
proposition is proved.

Proposition 6 (splitting property II)
If ([x1, . . . , xn+1], c) ∈ ASP (G) and n ≥ 2 then there are u, v ∈ STR2(G0) and k ∈ {2, . . . , n},
uniquely determined, such that

c = [u, v]

([x1, . . . , xk], u) ∈ ASP (G)

([xk, . . . , xn+1], v) ∈ ASP (G)

Proof. Consider ([x1, . . . , xn+1], c) ∈ ASP (G) and n ≥ 2. Because ASP (G) ⊆ STR(G0)
we can apply Proposition 5. Thus, there are u, v ∈ STR2(G0) and k ∈ {2, . . . , n}, uniquely
determined, such that

c = [u, v]

([x1, . . . , xk], u) ∈ STR(G0)

([xk, . . . , xn+1], v) ∈ STR(G0)
But h(c) ∈ L, therefore from the definition of the mapping h we deduce that σ(h(u), h(v)) ∈ L.
We have h(u) ∈ (L0)σ and h(v) ∈ (L0)σ. From L ∈ Initial((L0)σ) we deduce that h(u) ∈ L and
h(v) ∈ L. This shows that ([x1, . . . , xk], u) ∈ ASP (G) and ([xk, . . . , xn+1], v) ∈ STR(G0).

5 Inference process based on accepted structured
paths

We consider a stratified graph G = (G0, L, T, u, f) over G0 = (S,L0, T0, f0). Let Y = (Y,�)
be a binary algebra and an injective mapping ob : S −→ Y . We suppose that for each u ∈ L
we have an algorithm Algu : Y × Y −→ Y . This means that is a partial mapping such that
dom(Algu) ⊆ Y ×Y and for every pair (x, y) ∈ dom(Algu) given as input for Algu) this algorithm
gives as output some element of Y .

Definition 3 A knowledge processing system based on stratified graphs is a tuple

KPS = (G, (Y,�), ob, {Algu}u∈L)

where

• G = (G0, L, T, u, f) is a stratified graph over G0 = (S,L0, T0, f0);

• (Y,�) is a binary partial algebra;

• ob : S −→ Y is an injective mapping;

• For each u ∈ L the entity Algu is an algorithm that defines a mapping Algu :
dom(ALgu) −→ Y , where dom(Algu) ⊆ Y × Y .
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We agree to say that such a structure is a knowledge processing system over G with Y as
output space an we denote this property by KPS(G, Y ).

For each d = ([x1, . . . , xn+1], σ(u, v)) ∈ ASP (G) we consider the image dob =
([ob(x1), . . . , ob(xn+1)], σ(u, v)) of the path d. We denote

ASPob(G) = {dob | d ∈ ASP (G)}

We remark that we can consider the operation ⊗ for the case of images of accepted paths, as in
the case of structured paths:

⊗ : ASPob ×ASPob −→ ASPob

as follows:

• dom(⊗) = {((α1, u1), (α2, u2)) | (α1, u1) ∈ ASPob, (α2, u2) ∈ ASPob,
last(α1) = first(α2)}

• If ([x1, . . . , xk], u) ∈ ASPob and ([xk, . . . , xn], v) ∈ ASPob then

([x1, . . . , xk], u)⊗ ([xk, . . . , xn], v) = ([x1, . . . , xn], [u, v])

For a knowledge processing system based on stratified graphs we can define the inference
process as in the next definition.

Definition 4 The inference process IPG,Y generated by the stratified graph G and the output
space Y is the mapping

IPG,Y : ASPob(G) −→ Y

defined as follows:

IPG,Y (dob) =


Alga(x, y) if ([x, y], a) ∈ ASPob

IPG,Y (d1)� IPG,Y (d2) if dob = d1 ⊗ d2

Based on previous concepts and results we can propose the following algorithm of the inference
process.
Input:

KPS = (G, (Y,�), ob, {Algu}u∈L); ((x, y) ∈ ob(S)× ob(S)
Method:

Compute C = {dob = (X,u) | first(X) = x, last(X) = y};
Output:

IPG,Y (C)
End

6 Conclusions

In this paper we treat from the mathematical point of view the concept of inference based on
stratified graphs. We define the concept of knowledge processing system with stratified graphs
and the concept of inference of such systems.
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nals of Discrete Mathematics 49 (North-Holland, 1991)
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[4] N. Ţăndăreanu, Knowledge representation by labeled stratified graphs, Proceedings of
the 8th World Multi-Conference on Systemics, Cybernetics and Informatics (2004), Vol.
5, 345-350.
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