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Abstract 

The goal of this paper is to discuss two different modern approaches for modeling and prediction 

of time series – general regression neural networks and support vector regression. It is known that the 

performances of different approaches from machine learning field are strongly dependent on data. We 

apply and evaluate our methods on eight different real meteorological series. In order to increase the 

SVR performances we develop a method for obtaining a SVR optimal multiple kernel.   

1 Introduction 

Modeling the time series evolution is of main importance for the prediction of real life processes 

as  temperature, precipitation, earthquakes, due to their economic and social implications, that 

could be dramatic (drought, disasters, famine etc). The main problems in modeling and prediction 

of this type of series are their non – linearity, high variability, correlation and/or persistence, 

making them inappropriate for the use of classical regression methods. Therefore, new methods, 

belonging to machine learning, artificial intelligence and optimization techniques, as artificial 

neural networks (ANN), gene expression programming (GEP), support vector regression (SVR) 

can be successfully used for this aim. It is known that generally a SVM based approach is strong 

dependent of data type. In [3] we have studied the problem of forecasting the meteorological time 

series. We used for this purpose an adaptive GEP algorithm, AdaGEP, and a ε-SVR algorithm 

with RBF kernel and we performed an empirical comparison of these methods on many series of 

temperature and precipitations from different meteorological stations in the Black Sea region.  

The comparison revealed that there is not one method with best results for all studied data series, 

but  AdaGEP dominates SVR models in the most cases. It would be ideal to find a method capable 

to be used with almost the same level of performances for meteorological series obtained from 

any stations and for all variables taken into account (temperatures, precipitations etc.). This is a 

difficult task and it is not sure that it can be accomplished.  

The aim of this paper is to analyze two models obtained for meteorological time series using 

General Regression Neural Networks (GRNN) and SVR. We detect models and we evaluate their 

performances for six different real meteorological series, using DTREG software [6]. We also 

propose a theoretical approach for improving the performances of SVR. This is a method for the 

choice of a multiple SVR kernel such that the measure of the prediction error is minimized. We 

consider two such kinds of measures: Mean Absolute Prediction Error and Mean Squared Error.  
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2 Problem model 

2.1 Time series prediction 

The problem we face with is the following one: given a set of measured values for some 

meteorological characteristics (temperature, precipitations) in a period of time, predict the future 

values based on the past values. Practical a number d of past values is chosen to predict the future 

one. The choice of d is not the object of this article. Usually additional information and 

experiments are necessary to accomplish this task.  

The classical problem of time series prediction is: find a function f which predicts future values, 

in a given prediction horizon p, of the series ( 1)( , ,..., )t t t t dX x x x    , i.e. express ( )t p tx f X  .  

The series studied are annual and monthly precipitations and temperature data collected at four 

main meteorological stations from Dobrudja region, Romania, presented in Table 1.  

 

Series Station Type Variable Period 

CAT  Constanta  Annual Temperature  01.1965 – 12.2005 

TAT Tulcea  Annual Temperature  01.1965 – 12.2005 

SAT  Sulina  Annual Temperature  01.1965 – 12.2005 

JAT  Jurilovca  Annual Temperature   01.1965 – 12.2005 

CMP   Constanta  Monthly Precipitation 01.1961 – 12.2009 

SMP  Sulina  Monthly Precipitation 01.1965 – 08.2007 

CMT  Constanta Monthly Temperature 01.1961 – 12.2009 

SMT  Sulina  Monthly Temperature 01.1961 – 08.2003 

 

Table 1. Data series  
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 Fig.1. Series of annual temperatures 
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Fig.2. Series of monthly temperatures 
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Fig.3. Series of monthly precipitation                   
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 The charts of series of annual temperatures are presented in Fig.1, those of monthly temperatu res 

in Fig. 2 and of monthly precipitation in Fig. 3. 

2.2 General Regression Neural Networks (GRNN) 

GRNN introduced by Specht [14] is a feedforward network that allows the estimation of a 

dependent vector Y= (Yi) from an independent vector X= (Xj) obtained by measurements. GRNN 

have the same architecture as the Probabilistic Neural Networks (PNN). The difference is that 

PNN act on categorical target variables and GRNN act for continuous target variables. That means 

that PNN performs classification while GRNN performs regression. PNN estimate the probability 

density function f(X,Y) for each class based on the training samples using Parzen or a similar 

probability density function.  In both cases (PNN and GRNN) the operations are organized into a 

multilayered feed-forward network with four layers: Input layer, Pattern layer, Summation layer, 

Output layer [13].  In the case of GRNN the input layer contains one neuron for each predictor 

variable Yi. The pattern layer contains one neuron for each case in the training data set, and stores the 

predictor variables values and target values [2]. The summation layer computes the numerator and the 

denominator of the estimator using two neurons: the numerator and the denominator summation 

neurons. Output layer contains one neuron that contains the result of division of the values in the 

numerator and the denominator of the previous layers. Both GRNN and PNN use nonparametric 

estimators of probability density function.  The measure of how well each training sample can 

represent the position of prediction is the Euclidian or the city block distance between the training 

sample and the point of prediction [14]. 

2.3 Support Vector Regression (SVR) 

SVR is a category of Support Vector Machines (SVM). SVM represents a powerful tool for solving 

learning tasks like classification and regression tasks. They are supervised learning methods 

introduced first by Vapnik [15].  The goal of SVM is to build a model, f, which predicts the output of a 

system depending of a set of variables, using a set of training data for which the output is known. The 

main characteristic of SVM is that the prediction function is expanded on a subset of support vectors 

as will be seen in relation (1). Support Vector based algorithms were extended from classification 

tasks to regression ones using various loss functions [1]. Traditional statistical regression techniques 

aim to minimize the deviation of f(x) from the known outputs for all training examples. The ε - SVR 

introduced in [15] uses the so called ε – insensitive loss function. It minimizes the generalized error 

bound instead of minimizing the observed training error, being based on the structural risk 

minimization principle. ε - SVR is searching for a function f that has at most ε deviation from the 

target outputs on all the training data and is as flat as possible. These requirements lead to a convex 

optimization problem. Next we present this formulation following the presentation from [15,1].  

We consider first the case of a linear function f:  

( ) , ; ,f x w x b b x X      

where we denoted by X the space of  all input instances and ,   represents the dot product in X. 

Suppose that the training data are denoted by ( , )i ix y X  , i =1, ..., m. 

To take into account the possibility of an infeasible convex optimization problem we introduce the 

slack variables 
*,   and the problem formulation becomes: 

minimize 
2 *

1

1
( )

2

m

i i

i

w C  


 
  

 
 , 

subject to the constraints: 
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*
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, 0
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The dual optimization problem is  

maximize       * * * *

, 1 1 1

1
,

2

m m m

i i j j i j i i i i i

i j i i

x x y        
  

 
       
 

    

subject to the constraints: 

 *

1

0
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i i

i

 


   and  
*, [0, ]i i C    

The function f can be rewritten as: 

       *

1

( ) ,
m

i i i

i

f x x x b 


         (1) 

Relation (1) represents the so - called support vector expansion of the function f.  The examples 

corresponding to non-vanishing coefficients are called Support Vectors. 

The constant C > 0 and ε are parameters of the method. An improved SVR technique, named ν – SVR 

considers ε itself as a variable in the optimization process introducing a new parameter (0,1)   (see 

[1]).  The new parameter is more convenient than ε.  

 In order to solve the non-linear problem we make a projection  of the input data X in a higher 

dimensional feature Hilbert space F.  Using the “kernel trick” we can rewrite (1) for a non - linear 

function, without knowing explicitly the form of the mapping  : 

       *

1

( ) ( , )
m

i i i

i

f x K x x b 


                (2) 

The kernel function K represents the inner product in the feature Hilbert space F.  Several kernels can 

be used: linear, polynomial, RBF, sygmoidal (see [12]). These kernel functions are defined in Table 7. 

Other functions satisfying the Mercer’s conditions can be used as kernel functions ([13]). 

2.4  Settings and performance evaluation 

For performance evaluation of the model obtained using GRNN and SVR we divided the data into 

two parts, one for training and one for validation. The last one contained 10 values for the annual 

series and 24 values for the monthly ones. Both algorithms were applied using the default settings 

of DTREG software [6], the number of predictor variables being 1 for the annual data and 2 for 

the monthly data. We implemented the ν – SVR, with RBF kernel.  

The models performance have been analysed using as indicators the Mean Squared Error (MSE) and 

the Mean Absolute Prediction Error (MAPE) defined by: 

         

* 2

1

( )
n

i i

i

x x

MSE
n








        (3) 

         

*

1

n
i i

i i

x x

x
MAPE

n








       (4)  

where xi  is the i - th registered value in the data series and 
*

ix  is the i - th value predicted by the 

model. We can observe that the MSE is a scale-dependent accuracy measure while the MAPE is 

scale independent. For models resulted by GRNN application, the correlation between the actual 

and the predicted value was also reported. 
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 3 Results and discussions 

The MSE for the models on the training and validation dataset are presented in Tables 2 and 3. 

For the first dataset, GRNN performed better than SVM. We remark the big differences of MSEs 

corresponding to GRNN and SVR on the training sets for TAT, SAT, JAT and CMP. For the 

validation datasets, MSE are comparable in the case of CAT, JAT. The SVR algorithm performs 

better on validation data in the case of the series TAT, JAT and SMP.  

The MAPE  for the models on the training and validation dataset are presented in Tables 4 and 5. 

For the validation datasets, MAPE are generally comparable for GRNN and SVR. GRNN 

performs better in the case of CAT, CMP, CMT and SMT. In the case of training data GRNN 

significantly outperforms SVR.  

 

Series GRNN SVR 

CAT 0.066 0.39 

TAT 0.000148 0.31 

SAT 0.0006  0.27 

JAT 0.034 0.39 

CMP 6.45 793.85 

SMP 327 373.02 

CMT 4.08 5.79 

SMT 3.95 5.6 

Table 2.  

MSE for the models on the training datasets 

 
 

Series GRNN SVR 

CAT 0.434 0.45 

TAT 0.99 0.49 

SAT 0.503 0.93 

JAT 0.518 0.46 

CMP 887.17 899.93 

SMP 105.09 97 

CMT 1.59 3.27 

SMT 9.27 11.75 

Table 3.  

MSE for the models on the validation datasets 
 

 

The correlations between the actual and predicted values in the experiments performed with 

GRNN are presented in Table 6. GRNN performed better on the training datasets and in five of 

eight cases on the validation datasets. The exceptions are for CMT and SMT, for which the 

registered performances are very high 

 

Series GRNN SVM  

CAT  0.482 4.14 

TAT 0.021 3.76 

SAT 0.041 4.39 

JAT 0.322 4.16 

CMP  5.55 267.22 

SMP  244.33 209.62 

CMT  82.45 107.99 

SMT  49.14 60.34 
 

Series GRNN SVM 

CAT 4.8 4.88 

TAT 6.87 5.12 

SAT 7.58 5.15 

JAT 5.52 5.21 

CMP 580.34 594.75 

SMP 247.09 197.5 

CMT 24.36 35.78 

SMT 244.03 250.94 
 

 

Table 4.  

MAPE for the models on the training datasets 

 

Table 5.  

MAPE for the models on the validation datasets 
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Series Training Validation 

GRNN SVR  GRNN SVR  

CAT 0.913101 0.207317 0.312878 0.31407 

TAT 0.999859 0.623083 -0.394385 0.250404 

SAT 0.893635 0.605498 0.250289 -0.247702 

JAT 0.958707 0.183927 0.332102 0.349899 

CMP 0.996158 0.237336 0.078309 0.049084 

SMP 0.394746 0.256092 0.206757 0.250852 

CMT 0.96722 0.953139 0.986575 0.971232 

SMT 0.969537 0.956431 0.968031 0.961067 

 

Table 6. Correlations between actual and predicted values 

 

We observe that the performances are highly dependent of data. The size and the structure of the 

training set strongly influences the modeling and forecasting.  

Taking into account that SVR underperforms on the validation data set in most of the cases we 

conclude that SVR overfit the training examples. Possible causes of overfitting phenomenon could 

be the choice of parameters C and ν or the choice of the kernel. The choice of parameters C and ν 

in SVR was performed doing a grid search in a 10-fold cross-validation procedure in order to 

avoid the overfitting [7]. This leads us to the conclusion that the use of a single kernel is not 

capable to generate an accurate model and more complex kernel must be used.  

 A possible solution for obtaining best results using SVR for time series prediction is 

proposed in the next section. 

4 Optimal SVR multiple kernels for time series prediction 

In [10] we introduced a general frame for building optimal kernels for Support Vector 

Classification.  We implemented many particular methods derived from this frame for data sets 

Leukemia and Vowel from the standard libsvm package [4] and the results were promising.  

In the following we propose a new method for obtaining optimal multiple SVR kernels for time 

series prediction.  The idea is to create a SVR model based on a multiple kernel in order to obtain 

better prediction results. Multiple kernels are built using the simple standard kernels presented in 

Table 7 and the set of operations {+, *, exp} which preserve Mercer’s conditions (see [9] for 

many details on Mercer’s Theorem).   

 

Kernels 

Polynomial: 
,

1 2 1 2( , ) ( ) ; ,r d d

polK x x x x r r d             (5)                                          

RBF: 
2

1 2 1 22

1
( , ) exp ;

2
RBFK x x x x 




 
   

 
 

 

       (6) 

Sigmoidal: 1 2 1 2( , ) tanh( 1);sigK x x x x                (7) 

  

Table 7.  Standard single kernels 
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 Following the models implemented in [10] we proposed a multiple kernel composed by 4 single 

kernels, but our approach is not restricted to this number of single kernels. The tree formal 

representation of the multiple kernel K= (K1 op2 K2) op1 (K3 op3 K4), is given in Fig. 4.  

 

 
Fig. 4. – Formal representation of multiple kernel [10] 

 

The choice of a multiple kernel supposes the choice of the type of the single kernels and the 

choice of the corresponding parameters. 

 To construct the multiple kernels we use an evolutionary method structured on two levels: the 

macro and the micro levels. In the macro level the multiple kernel is built using a genetic 

algorithm. The multiple kernels are coded into chromosomes. The chromosomes quality is 

computed in the micro level using a SVR algorithm. The main difference from the classification 

case is that we have to additional constants to be appropriately chosen: C and ε (or ν depending on 

the SVR approach). We propose two solutions for the choice of these parameters in the end of this 

section. 

 As structural representation of the multiple kernel we use a linear representation given in 

Fig.5.  For coding the multiple kernel we use 78 genes:  6 genes for operations (2 genes for each 

operation  opi,  i = 1, 2, 3);  6 genes for kernel types (2 genes for each type  ti,  i = 1, 2, 3); if the 

single kernel Ki is polynomial  we use 4 genes for the degree parameter di and 12 genes for ri;  if 

the single kernel Ki is not polynomial we use 16 genes to represent the real value νi.. 

 

 
 

Fig. 5. Linear representation of multiple kernel [10] 

 

In order to evaluate the quality of the chromosomes we use a SVR algorithm acting on a particular 

set of data.  In order to make the evaluation we divide the dataset into two subsets: the training 

subset and the test subset. The training subset is used for problem modeling and the test subset is 

used for evaluation. The training subset is also randomly divided in two subsets: the learning and 

the validation subsets. The learning subset is used for training the SVR algorithm and the 

validation subset is used for computing the Mean Absolute Prediction Error (MAPE) defined in (4), 

which represents the fitness function for evaluation of chromosomes.  

The performance of our predictive model based on the multiple kernel given by the genetic 

algorithm is evaluated using cross validation method. 

 There is two possibility for the choice of parameters C and ε (or ν) from the SVR algorithm. 

The first one is to adapt a grid choice of parameters which imply to run our method for each pair 

in the grid and then to chose the best triplet (C, ε, optimal multiple kernel). This method is huge 

time consuming in the training step. Due to the independence of the computation in each point of 

the grid it could give good results in the case of parallelization. The second method includes the 
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two parameters in the chromosome representation such that a choice of a multiple kernel is made 

together with a choice of the pair (C, ε). 

 Implementation and practical tests are necessary in order to validate our theoretical proposed 

method. 

5 Conclusions and further directions of work  

In this article we studied the performance of modeling meteorological time series using two 

different approaches – GRNN and SVR. It has been seen that the results are strong dependent on 

datasets. In terms of Mean Squared Error, GRNN performed better in all cases for the training sets 

and in five from eight cases for validation sets. Since we needed an invariant measure of 

performances, we also used Mean Absolute Prediction Error.  In this case, GRNN performed better 

in seven from eight cases for the training sets and in four cases for validation sets. For two series 

(CMT and SMT) the correlation between predicted and actual values is very good both for 

training and validation datasets. For the other six series the correlation is under 0.5 and in the case 

of TAT validation data set for GRNN and SAT validation data set for SVR we obtained a negative 

correlation. The results suggest us the necessity of a more complex model, if possible a flexible 

one, able to fit well to different series of meteorological data. The proposed theoretical solution is      

a new SVR approach using an optimal multiple kernel. The optimal multiple kernel is obtained 

using an evolutionary algorithm structured on two levels. Further works will be oriented to the 

implementation and testing of this method on different meteorological datasets in order to validate 

it.    
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