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Abstract

Starting from a general class of positive approximation processes of discrete type expressed by
series, we indicate a way to modify the operators into finite sums. The new operators are suitable to
be generated by software. Examples are delivered.
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1 Introduction

It is known that Approximation Theory, an old field of mathematical research, has a great potential for
applications to a wide variety of problems. The study of the linear methods of approximation, which are
given by sequence of linear and positive operators, became a firmly entrenched part of Approximation
Theory. Usually, two types of positive approximation processes are used – the discrete respectively contin-
uous form. In the first case, multiple classes of linear positive operators are expressed by series. We recall
two classical examples of such operators used to approximate functions defined on unbounded intervals.
We refer to Mirakjan-Szász operators Sn, n ∈ N, and Baskakov operators Vn, n ∈ N, respectively. They
are defined as follows

(Snf)(x) =
∞∑
k=0

sn,k(x)f

(
k

n

)
, sn,k(x) =

(nx)k

k!
e−nx, x ≥ 0,

(Vnf)(x) =
∞∑
k=0

vn,k(x)f

(
k

n

)
, vn,k(x) =

(
n+ k − 1

k

)
xk(1 + x)−n−k, x ≥ 0,

(1)

where f belongs to the space C2(R+), R+ := [0,∞),

C2(R+) = {f ∈ C(R+) : lim
x→∞

(1 + x2)−1f(x) is finite},

endowed with the norm ‖ · ‖, ‖f‖ = sup
x≥0

(1 + x2)−1|f(x)|.

As can be seen, the construction of such operators requires an estimation of infinite sums and this
fact restricts the operators usefulness from the computational point of view. A question arises: how
can we modify the operators to became usable for generating software programmes for approximation of
functions. In this respect it is useful to consider partial sums which have only finite terms depending
upon n and x. For the above mentioned operators this approach has already been made. For example,
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J. Grof [5] examined the operator (Sn,Nf)(x) =

N(n)∑
k=0

sn,k(x)f(k/n) establishing that if (N(n))n≥1 is a

sequence of positive integers such that lim
n→∞

(N(n)/n) =∞, then (Sn,Nf) converges pointwise to f . Also

the following modified operators of Mirakjan-Szász respectively Baskakov-type were investigated

(Sn,δf)(x) =

[n(x+δ)]∑
k=0

sn,k(x)f

(
k

n

)
, (Vn,δf)(x) =

[n(x+δ)]∑
k=0

vn,k(x)f

(
k

n

)
, x ≥ 0. (2)

Here [α] indicates the largest integer not exceeding α. The first class was studied by Heinz-Gerd Lehnhoff
[6] and the second has approached by J. Wang and S. Zhou [9]. In (2) the number of terms considered
in sum depends on the function argument. Roughly speaking, the initial operators are truncated losing
their ”tails”. Following this route, a one dimensional general case is investigated in [1].

The aim of this note is to present similar constructions for bivariate classes of discrete operators.
Instead of a double series we consider a finite sum. This way the use of computers in approximating func-
tions is possible with lesser effort. The focus of the paper is on presenting different examples comparing
the approximations generated by the series and by corresponding ”amputated” series.

2 The operators and their truncated variants

Following [2], we investigate operators useful to approximate functions defined on R+ × R+. Therefore,
on this domain we define for every (m,n) ∈ N× N a net of form ∆m,n = ∆1,m ×∆2,n, where

∆1,m(0 = xm,0 < xm,1 < . . .) and ∆2,n(0 = yn,0 < yn,1 < . . .).

Set N0 = {0}∪N. Products of parametric extensions of two univariate operators are appropriate tools
to approximate functions of two variables. For this reason, the starting point is given by the following
one-dimensional operators

(Amf)(x) =

∞∑
i=0

am,i(x)f(xm,i), (Bnf)(y) =

∞∑
j=0

bn,j(y)f(yn,j), (3)

where am,i, bn,j are non-negative functions belonging to C(R+), (i, j) ∈ N0×N0, such that the following
identities

∞∑
i=0

am,i(t) =
∞∑
j=0

bn,j(t) = 1, t ≥ 0, (4)

take place.
In the above f ∈ F1(R+) where F1(R+) stands for the domain of Ln containing the set of all

continuous functions on R+ for which the series in (3) is convergent.
Starting from (3), for each (m,n) ∈ N× N we introduce a linear positive operator as follows

(Lm,nf)(x, y) =

∞∑
i=0

∞∑
j=0

am,i(x)bn,j(y)f(xm,i, yn,j), (x, y) ∈ R2
+, (5)

where f ∈ F2(R+×R+), the space of all continuous functions on R+×R+ for which the double series in (5)
is convergent. We notice if the function f can be decomposed in the following manner f(x, y) = f1(x)f2(y),
(x, y) ∈ R2

+, then one has

(Lm,nf)(x, y) = (Amf1)(x)(Bnf2)(y). (6)

Actually, the method of using the product of parametric extensions of univariate operators is a classic
one. It was first used in the context of multivariate polynomial interpolation. For example in [4] can be
found many historical information on this topic.
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Further on we indicate a truncated variant of operators defined at (5). Let u = (us)s≥1, v = (vs)s≥1
be sequences of positive numbers such that

lim
s→∞

√
sus = lim

s→∞

√
svs =∞. (7)

Taking in view the net ∆1,m, we divide the set N0 into two parts

I(x, um) = {i ∈ N0 : xm,i ≤ x+ um} and I(x, um) = N0 \ I(x, um).

Similarly, via the network ∆2,n, we introduce J(y, vn) and J(y, vn).
For each (m,n) ∈ N× N and any f ∈ F2(R+ × R+) in [2], we defined the linear positive operators

(L∗m,nf)(x, y;u, v) ≡ (L∗m,nf)(x, y;un, vn)

=
∑

i∈I(x,um)

∑
j∈J(y,vn)

am,i(x)bn,j(y)f(xm,i, yn,j), (x, y) ∈ R2
+.

(8)

The approach made above represents the general framework. In particular we can consider an,i = bn,i,
n ∈ N and i ∈ N0. Moreover, the network applied to the set R+ × R+ is usually of the form (i/m, j/n),
(i, j) ∈ N0 × N0. In this case the operators defined by (5) turn into the following operators

(Lm,nf)(x, y) =
∞∑
i=0

∞∑
j=0

am,i(x)an,j(y)f

(
i

m
,
j

n

)
, (x, y) ∈ R2

+. (9)

Their truncated version given at (8) becomes

(L∗m,nf)(x, y;u, v) =

[m(x+um)]∑
i=0

[n(y+vn)]∑
j=0

am,i(x)an,j(y)f

(
i

m
,
j

n

)
, (x, y) ∈ R2

+. (10)

We mention that in the particular case an,k = vn,k, k ∈ N0, see (1), the above sequence turns into the
truncated version of bidimensional Baskakov operators studied by Walczak [8].

We discuss how the sequences defined by (10) are becoming approximation processes. Let (Λn)n≥1
be a sequence of positive linear operators defined on the Banach space C(K), K ⊂ R, a compact interval.

The classical theorem of Bohman-Korovkin states: if (Λnek)k≥1 converges to ek uniformly on K,
k ∈ {0, 1, 2}, for the test functions e0(x) = 1, e1(x) = x, e2(x) = x2, then (Λnf)n≥1 converges to f
uniformly on K for each f ∈ C(K). The requirement (4) ensures the identity Ane0 = e0. If we assume

lim
n
Anej = ej , j ∈ {1, 2}, (11)

then (Anf)n≥1 converges to f uniformly on any compact K ⊂ R+.
Setting ei,j(x, y) = xiyj , i ∈ N0, j ∈ N0, i + j ≤ 2, according to a result of Volkov [7] the test

functions corresponding to the bidimensional case are the following four: e0,0, e1,0, e0,1, e2,0 + e0,2.
Since Lm,nei,j = (Amei)(Anej), see (6), relation (4) and our hypotheses (11) guarantee that the

sequence (Lm,n) is an approximation process,. Taking in view (7) and following a similar route as in [1,
Theorem 2] we can assert that (L∗m,nf) is also an approximation process. The advantage of using L∗m,n
is that we work with finite sums, software enabling fast construction of operators.

3 Examples and graphs

We illustrate the effectiveness of construction given in (10) by choosing an,k = sn,k, k ∈ N0, see (1).
Consider the following functions

fi : [0,∞)× [0,∞)→ R, i = 1, 2, 3

f1(x, y) = e−x−y,

f2(x, y) = ex+y,

f3(x, y) = sinx sin y.

13



 

 

AApppprrooxxiimmaattiioonn  ooff  bbiivvaarriiaattee  ffuunnccttiioonnss  bbyy  ttrruunnccaatteedd  ccllaasssseess  ooff  ooppeerraattoorrss  

 

 

 

If we apply the operator Lm,n to our functions we obtain

(Lm,nf1) (x, y) =
∞∑
i=0

∞∑
j=0

exp (−mx− ny) (mx)
i
(nx)j exp

(
− i
m −

j
n

)
i!j!

=
1

exp
(
mx+ ny − ny

exp(−1/n) −
mx

exp(−1/m)

) ;

(Lm,nf2) (x, y) =
∞∑
i=0

∞∑
j=0

exp (mx+ ny) (mx)
i
(nx)j exp

(
i
m + j

n

)
i!j!

= exp (−mx− ny + ny exp (1/n) +mx exp (1/m)) .

(Lm,nf3) (x, y) =
∞∑
i=0

∞∑
j=0

exp (−mx− ny) (mx)
i
(nx)j sin i

m sin j
n

i!j!

= −1

2

(
cos

(
mx sin

1

m
+ ny sin

1

n

)
− cos

(
mx sin

1

m
− ny sin

1

n

))
·

exp

(
mx cos

1

m
+ ny cos

1

n
−mx− ny

)
For L∗m,n we consider successively the following sequences

(i) u(1), v(1), where u
(1)
m = m, v

(1)
n = n;

(ii) u(2), v(2), where u
(2)
m = 3

√
m, v

(2)
( n) = 3

√
n.

In the sequel, for each function fi, i = 1, 2, 3, we give the following graphs

• L10,10fi

• (L∗10,10fi)(., ., u
(j), v(j)), j = 1, 2;

•
∣∣L∗10,10fi)(., ., u(j), v(j))− L10,10fi

∣∣, j = 1, 2.

See Figures 1, 2, and 3.
Finally, we consider an example for which Lm,n cannot be computed exactly. Let f4 be given as

follows
f4 : [0,∞)× [0,∞)→ R, f4(x, y) = sin

√
x2 + y2.

Figure 4 gives the graphs as above, excepting L10,10f4.
For graphical treatment of other types of bivariate operators see [3].
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Figure 1: The graphs corresponding to f1
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Figure 2: The graphs corresponding to f2
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Figure 3: The graphs corresponding to f3
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Figure 4: The graphs corresponding to f4
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