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Abstract

Ant colony optimization (ACO) algorithm was recently successfully used to find suboptimal solu-
tions to many hard optimization problems. There are few versions of the algorithm that improve its
performance. The main problem is that algorithm can be trapped into local minima unable to escape.
We implemented a hybridization for the ACO algorithm that proved to be efficient in avoiding that
problem. The difference is that, while all other methods for avoiding local minima widen the search
randomly, our algorithm excludes undesirable pars of the solution. We tested our method on four
different graph optimization problems where in all cases it improved results.

1 Introduction

Many real-life problems can be represented as some kind of optimization problem, often an untractable
one. Nature inspired metaheuristics have been used recently to find suboptimal solutions to hard opti-
mization problems by simulating various natural phenomena. Swarm intelligence algorithms are a class of
nature inspired algorithms that try to mimic collective intelligence of colonies of ants, bees, birds etc. By
trying to simulate implicit intelligence of these swarms we talk about bee colony food finding or ant colony
path finding but in essence, in all these diverse mimicking, we do two things. We exploit good found
solutions, but also go to unknown less promising places in order to avoid being trapped in local minima.
The successfulness of any algorithm is determined by proper balance between exploitation and explo-
ration. This paper examines ant colony pheromone correction strategies which change exploitation and
exploration behavior of the original algorithm and application of these strategies to some combinatorial
problems.

2 Ant colony optimization (ACO) algorithm

The ant colony optimization (ACO) is a relatively new meta-heuristic for solving combinatorial problems.
ACO is, like genetic algorithms (GA), population based. It was first used for the travelling salesman
problem (TSP) by M. Dorigo [1] with very good results.

The basic idea of ACO is to imitate the behavior of ants in a colony while gathering food. Each
ant starts from the nest and walks toward food. It moves until an intersection where it decides which
path to take; in the beginning it seems to be a random choice, but after some time the majority of
ants are using the optimal path (Figure 1). This happens because the colony works as a group and not
just as individual ants and this is achieved by using pheromone. Each ant deposits pheromone while
walking, which marks the route taken. The amount of pheromone indicates the usage of a certain route.
Pheromone trail evaporates as time passes. Due to this a shorter path will have more of pheromone
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because it will have less time to evaporate before it is deposited again. The colony behaves intelligent
because each ant chooses paths that have more pheromone.

Figure 1: : Ant colony behavior over time

There are many different ways of converting the presented behavior into a computational system. We
outline the one presented by Marco Dorigo and Luca Maria Gambardella [2], with small modifications,
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Equations 1 and 2 give the probabilistic decision method that artificial ant k, currently at node r,
after visiting nodes in Mk uses for choosing the next node s.

• q is a random variable chosen uniformly from [0, 1]

• q0 is a predefined parameter that gives us a balance between exploitation (use of known good paths,
q <= q0) and exploration (search for new paths, q > q0)

• In the case of exploitation, the next node is selected by the highest value of S, which gives the value
of desirability of an edge depending on the amount of pheromone and its length. In Equations (1)
and (2), τrs is the value corresponding to the amount of pheromone deposited on edge connecting
r and s, and ηrs is the length of rs which is used as a heuristic.

• α and β are predefined parameters that specify the influence of the pheromone and the heuristic,
respectively.

• In the case of exploration the next node is chosen at random with a probability distribution given
by Equation (2), where prs is the probability of choosing edge rs.
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The pheromone trail is created using two types of updates. Global update is used to reward good
paths, or in other words more pheromone should be deposited on better paths. This is achieved by using
the following formula

τij = (1 − γ)τij + γΔτk ,∀ij ∈ Bk (3)

Bk is the set of all edges in the path ant k used, Δτk is the quality of that solution, and γ is a
predefined constant.

The local updating is used to avoid creation of a very strong edge used by all ants, and it emulates
pheromone evaporation. Every time an edge is chosen by an ant it loses some pheromone by the following
formula where δ is a predefined constant.

τij = (1 − δ)τij + δτ0 (4)

3 Variations of the ACO algorithm

There are different methods of improving ACO like certain types of hybridizations. Standard hybridiza-
tions are the combination of the basic algorithm with a local search [3], [4], [5] or some other algorithm.
Combining ACO with genetic algorithms (GA) has resulted in algorithms that gave better results than
separate use of these methods on a wide range of different problems [6], [7]. These hybridizations are
effective in increasing the efficiency of ACO, but are often complicated for implementation. The com-
plexity of their implementation is due to the fact that to separate algorithms need to be developed: one
for the ACO and another for the local search or for the genetic algorithm. Also, it has been shown that
hybridization may prevent the ACO from finding the optimal solution [8]. The other method of improv-
ing the performance of ACO is the use of different variations of the basic algorithm. On TSP different
variations of ACO gave different quality of results, and no variation can be considered the best [9].

Variations of the basic ACO like elitist ant colony, rank based ant colony system, min-max ant system
(MMAS) have been developed to improve the performance on TSP [10]. Similar variations have been
used on other problems solved by ACO. All these variations have the problem of becoming trapped in
local optima. An interesting approach, named the minimum pheromone threshold strategy (MPTS), was
proposed for the quadratic assignment problems to solve the stagnation problem [11].

Ant System (AS), is the most basic implementation of ACO; in this version of the algorithm all ants
are equal and leave pheromone. It is defined with Equations 5 and 4. AntS is the set of all the solutions
created by ants in the current step of the algorithm.
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Reinforced Ant System (RAS), which is the same as Ant system, except that the global best solution
is reinforced each iteration.
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In some variations of this method the iteration best solution is also reinforced each iteration. With
this approach the basic AS is made to be slightly greedier. It is defined with Equations 6 and 4.
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Elitist Ant System (EAS) is the version of the ACO algorithm where individual ants do not automat-
ically leave pheromone. In each iteration step of the colony, or in other words when all the ant complete
their solutions, only the global best solution will be used to update the pheromone trail. In this way, the
search is even more centralized around the global best solution. It is defined with Equations 7 and 4.

τi =
1∑

j∈V
′

gb

w(j)
, ∀i ∈ V

′
gb (7)

MinMax Ant System (MMAS) is the same as the Elitist Ant colony System, but with an extra
constraint that all pheromone values are bounded. We adopt the formulas presented in article [12] in
which max is calculated dynamically as new best solutions are found by Equation 8, and min is calculated
at the beginning of calculations by Equation 9. Parameter avg is the average number of vertexes that
are possible to be chosen, pbest is the possibility of the best overall solution being found and τ0 is the
initial value of the pheromone trail calculated as the quality measure of the greedy algorithm solution.

τmax =
1

(1 − p)
τgb (8)

τmin =
τ0(1 − n

√
pbest)

(avg − 1) n
√

pbest
(9)

This variation has two effects that improve the effectiveness of EAS. First, the pheromone trial will
not become very strong on some good vertexes and making them a part of almost all newly created
solutions. By giving a lower bound to the pheromone trail the potential problem of certain parts of the
solution being totally excluded from the search due to very weak values of pheromone is avoided.

Rank Based Ant Colony System (RANKAS) [13] is a modification in which besides the quality we
also use the rank (R) of found solutions. Rank is defined by the quality of the solution compared to
solutions found by other ants in the same iteration. It is defined with Equations 4 and 10:

BRank = {V |(R(V ) < RK)(̂V ∈ AntS)}
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In the implementation of this algorithm, it is important how many best solutions will be taken into
account when updating the pheromone trail. In Equation 10 parameter RK is used to define the number
of best ranked ants which will affect the trail. This parameter is user defined and it is very important for
the effectiveness of this algorithm. In its extreme cases when RK is equal to 0 RANKAS is equivalent
to EAS.

4 Avoiding stagnation in the ACO algorithm

The ACO meta-heuristic algorithm has several different variations which are used of which elitist ant
system (EAS) and Min-max ant system (MMAS) are used most commonly.

EAS increases the efficiency of the basic ACO by making its search more greedy; this is done through
intensifying the search near the global best solution. In this version only the global best solution (or in
some variations only the iteration best solution) deposits the pheromone. This has the weakness of some
edges becoming very strong and becoming a part of almost all solutions, while others becoming very weak
and being chosen very rarely.
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Min-max ant system (MMAS) [12] is an improvement of the EAS that tries to solve this problem.
The improvement is done by adding an extra constraint that all pheromone values are bounded, τi ∈
[τmin, τmax]. There are two effects of this. First, the pheromone trial will not become too strong on good
edges and second, the other potential parts of the solution will not be totally excluded from the search
due to very weak values of the pheromone. This approach improves the results of the EAS, but the
stagnation still happens. Since τmin has to be set to a low value, once the trail of a vertex reaches τmin

it becomes chosen very rarely. The search is never intensified near that point unless it becomes a part of
the global best solution. The basic solution for this problem is to add some criteria for search stagnation
and if stagnation has occurred to reset the pheromone trail to initial values [14].

Minimum pheromone threshold strategy (MPTS) is another approach to solving the early stagnation
problem whose effectiveness has been shown on the quadratic assignment problems [11]. The idea behind
MPTS it to use minimum threshold value τmt that is bounded τmin < τmt < τmax. In the beginning
of the algorithm it is set to some initial value and then adjusted during the search, depending on the
performance. Threshold τmt is used for updating the pheromone trail. When the search is performed,
values in the pheromone trail τi are compared to the τmt and if τi is lower than τmt, than τi is changed
to τmax. Thus the MPTS avoids reinitialization of the pheromone trail and explores the solution search
space more systematically. No loss of information occurs related to the pheromone trail reset, while the
good properties of the MMAS are preserved.

The idea of our hybridization is to use the information about the best-found solution to perform
corrections on the pheromone trail. We introduce the concept of suspicion that some edges of the best
found tour are not good. We try to direct the search to new areas of solution space that are less suspicious
which means with less undesirable properties. Directing the search is done by greatly decreasing the
pheromone trail values at suspicious edges.

Before we explain in detail this concept we wish to point out important differences between the MPTS
for the basic MMAS and our hybridization. In the MMAS the increasing of diversification is done non-
selectively to the whole search space, first by adding τmin to prevent total exclusion of some vertexes
from the search and, in the case of stagnation, by resetting the pheromone trail to initial values. When
MPTS is added to the MMAS the reinitialization of the trail is avoided by testing at each iteration the
pheromone values for all vertexes and if they have dropped below τmt they are set to τmax. This way
some edges are added to the small group of edges that are frequently chosen by ants. A big drawback of
this approach is that added edges are chosen just for having low values of τi which is a relatively random
process. As a result, edges that do not belong to good solutions are often reintroduced in the search.
Once the pheromone value for an edge is increased, it will take a long time for it to be removed from the
intensively tested group. In our hybridization however, we do not add edges to the ”popular” group but
rather remove edges with suspicious properties, making the group smaller. In the following iterations ants
will first select edges from the popular set, and when none are left, edges with better properties. This
way we direct to new search areas that are less suspicious which means with less undesirable properties.

5 Suspicious elements exclusion pheromone correction strategy

Here we describe our new type of hybridization for the ACO and implement it for the TSP. We improve
the ACO with a strategy for leaving local optima i.e. avoiding stagnation in search for the best solution.
This method is based on correcting the pheromone trail used in the ACO. We calculate this correction
based on the properties of the best-found solution so far. The basic idea of this correction is to lower the
possibility of edges with high level of undesirability to belong to the optimal solution. We do not claim
that our method gives the best results on TSP compared to all other developed algorithms, but we show
that our strategy improves results acquired by the ACO and that it is simple to add the method to the
existing algorithms.

5.1 Application to the TSP

When the ACO algorithm gets trapped in local optima for TSP, in many cases it was obvious from visual
observation which corrections should be made, or more precisely what should not appear in the shortest
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path (Fig.2). There where two simple criteria used on the edges belonging to the best found tour: very
long edges and intersecting edges are very unlikely to be a part of the optimal path. The next step was
to find a way to, without of major corrections to the ACO algorithm, remove them from the ants search
path. The solution was significantly lowering the amount of pheromone on randomly selected highly
suspicious edges belonging to the best path and letting the colony resume its search.

Figure 2: : Example of local optima found with ACO for TSP with suspicious edges on path

We have divided the correction into two parts: one considering the edge lengths, and the second that
is connected to intersecting ones. All intersecting edges would be considered as highly suspicious and the
pheromone trail would be corrected on them. Edges for which pheromone trail correction will be applied
due to their length is defined in the following way. First we define a heuristic for suspicion Eq. 11

Sus(rs) = length(rs) (11)

The next step is defining the probabilities of edges being selected for pheromone correction

prs(selected) =
RK − RankSus(rs)

RK
(12)

In Eq. (12) instead of using the value of Sus for edges, we used RankSus which represents their rank
by suspicion. RK is the maximal number of edges that are considered for correction. The final step is to
lower the pheromone trail for the selected edges:

∀rs ∈ Selected
τrs = δτrs

(13)

The use of suspicion defined in Eq. (11) is not fully effective because the same group of edges would
be repetitively selected until a better tour was found. Because of this we introduce an improved suspicion
criteria:

CorSus(rs) = Sus(rs) ∗ ExSusepect(rs) (14)

The improvement consists of tracking which edges have already been selected and preferring the
selection of new edges. To do this, a new array ExSuspect is introduced with elements initially set to 1.
If edge rs is selected, the following correction is done:

0 < λ < 1
ExSuspect(rs) = ExSuspect(rs) ∗ λ

(15)
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If a new best set is found, the values of ExSuspect are reset to 1. A more complex suspicion criteria
could have been used, that would better analyze the properties of the best found solution but we wished
to show that even with a relatively simple heuristic improvements can be archived.

The last step that is needed to completely describe this hybridization is to define some stagnation
criteria. We used the following: stagnation occurred if there was no change to the global best solution in
at least n iterations. If these criteria are satisfied, we apply previously defined correction algorithm to
the pheromone trail. The pseudo-code for an iteration step for the improved ACO is:

Reset Solution for all Ants

while (! AllAntsFinished)
For All Ants
If(AntNotFinished)
begin
add new edge AB to solution
based on probability
local update rule for A

End
End for

End while

Compute Global Update

If(Stagnation)and(UsingSuspisionImprovemnet)
Use SuspisionCorrectionMethod

Experimental results show that our pheromone correction strategy for removing undesirable elements
improves ACO algorithm for the TSP without any increase in computational complexity.

5.2 Other applications

Methods similar to one described in the previous section for the TSP were developed for three other
graph problems: the minimum weight vertex cover problem, the minimum weight dominant set and
the minimum connected dominant set problem. They are very similar and all three proved to be very
efficient. For some problems we obtained significantly better results [15] than previous algorithms. The
hybridization, although simple, has to be implemented as a module to the software system. That was easy
since we developed a software framework [16] for the ACO that allows exactly that: easy incorporation
of new module. A framework is a special kind of software library, that is similar to an application
program interface (API) in the class of packages, that makes possible faster development of applications.
However, while an API consists of a set of functions that user calls, a framework consists of a hierarchy
of abstract classes. The user only defines suitable derived classes that implement the virtual functions
of the abstract classes. Frameworks are characterized by using the inverse control mechanism for the
communication with the user code: the functions of the framework call the user-defined functions and
not the other way round. The framework thus provides full control structures for the invariant part of
the algorithms and the user only supplies the problem-specific details. Such environment was suitable to
implement our new pheromone correction strategy as a module that can be called from the framework.

6 Conclusion

We developed a pheromone correction strategy that is simple and universally applicable. It helps ACO
algorithm escape being trapped in local minima, but in a more efficient way than other known methods.
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While other used methods add new (usually random) elements to the currently investigated part of the
solution space, our hybridization removes undesirable elements from that space, allowing more desirable
elements to be included. Tests show that, without increasing computational complexity of the ACO
algorithm, better results are achieved. Future development will include implementation in the software
framework of our hybridization for other graph problems.

Acknowledgment: This paper is founded by Ministry of Education and Science of Republic of
Serbia from the research Grant III-44006.
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