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Abstract

For a given continuous function f(x) on [0, 1] we construct sequence of algebraic polynomials based
on Bernstein approximation. We prove that the limit of this sequence is the Lagrange interpolation
polynomial of degree n. Application to the representation of polynomial curves will be given.

1 Introduction

For any continuous function f ∈ C[0, 1] the classical n−th degree Bernstein polynomial at the point
x ∈ [0, 1] is given by

Bn(f ;x) =
n∑

k=0

f(
k

n
) · pn,k(x), (1.1)

where the Bernstein basis polynomials pn,k are defined as

pn,k(x) =
(

n

k

)
xk(1 − x)n−k. (1.2)

Setting

F̄ :=

⎛
⎜⎜⎜⎝

f(0)
f( 1

n )
...
f(1)

⎞
⎟⎟⎟⎠ = (f(0), f(

1
n

), . . . , f(1))t, (1.3)

and
b̄n(x) = (pn,0(x), pn,1(x), . . . , pn,n(x)) (1.4)

we may rewrite (1.1) in matrix representation by

Bn(f, x) = b̄n(x) ∗ F̄ , (1.5)

where in the remainder of the paper ∗ always denotes matrix multiplication. The Lagrange interpolation
polynomial (Lagrange interpolant) of degree n is given by

Ln(f, x) =
n∑

k=0

f(
k

n
) · ln,k(x), (1.6)

where the Lagrange basis polynomials ln,k are defined as

ln,k(xi) = δi,k =
{

1, i = k
0, i �= k

, 0 ≤ i, k ≤ n. (1.7)
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Setting
l̄n(x) = (ln,0(x), ln,1(x), . . . , ln,n(x)) (1.8)

we may rewrite (1.6) by
Ln(f, x) = l̄n(x) ∗ F̄ . (1.9)

The essential role in our further considerations plays the following (n + 1) × (n + 1) matrix T , whose
elements [t(n)

k,j ], k, j = 0, . . . , n are the values of Bernstein basis polynomials {pn,i(x)}n
i=0 at the knots

0, 1
n , 2

n , . . . , 1:

T :=

⎛
⎜⎜⎝

pn,0(0) pn,1(0) pn,2(0) . . . pn,n(0)
pn,0( 1

n ) pn,1( 1
n ) pn,2( 1

n ) . . . pn,n( 1
n )

. . . . . . . . . . . . . . .
pn,0(1) pn,1(1) pn,2(1) . . . pn,n(1)

⎞
⎟⎟⎠ (1.10)

This matrix was studied and applied in many different areas of analysis, numerical methods, computer
aided geometric design etc. For example in [1] a new fast method was introduced, to approximate the
value of a definite integral of f ∈ C[0, 1]. This method gives considerable better results for a broad
class of sufficiently differentiable functions, if compared with other known quadrature rules like Simpson
rule, composite trapezoid rule etc. The author has not observed that the limiting operator defined in
[1] by Jn(f) is actually the Lagrange interpolant of degree n, defined in (1.6). The algorithm developed
in [1] is the main motivation for us to write this paper. Other application of the matrix T is given in
[4] to construct recursive subdivision algorithm for polynomial curves-one of the basic tools in computer
aided geometric design (CAGD). In [4] it was shown, that the control polygons produced by recursive
subdivision always converge to their original curve. We may continue with many other applications
of the matrix T , but these two examples are enough to show its significance and application to solve
different problems. In our paper we consider only the values of a given function f at equidistant knots
k
n , k = 0, 1, . . . , n. This may be extended to arbitrary set of knots 0 ≤ t0 < t1 < . . . < tn ≤ 1 as it was
studied in [4]. Our main result states the following

Theorem 1 If f is any bounded function, defined on the interval [0, 1], then for all n = 1, 2, . . . and all
x ∈ [0, 1] we have

l̄n(x) ∗ F̄ = b̄n(x) ∗ T−1 ∗ F̄ , (1.11)

where T−1 is the inverse matrix of T .

In Section 2 we establish some properties of T , we construct a sequence of algebraic polynomials {B̃m}∞m=1

of degree n and show that its limit is the Lagrange interpolant Ln(f). The proof of Theorem 1 is based
on this observation. In Section 3 we show some applications and corollaries of our main result.

2 Proof of Theorem 1

We establish some properties of the matrix T .

Lemma 1 The matrix T is nonsingular.

Proof: If we suppose the contrary, then the columns are linear dependent, i.e. there are constants
λ0, λ1, . . . , λn, at least one of which different from 0, such that

hn(x) := λ0 · pn,0(x) + λ1 · pn,1(x) + · · · + λn · pn,n(x) = 0

holds for x = 0, 1
n , 2

n , . . . , 1. Hence hn(x) ≡ 0 for all x ∈ [0, 1]. It follows that polynomials {pn,i(x)}n
i=0

should be linear dependent, but this is not possible, because they build basis in the space of all algebraic
polynomials of degree ≤ n. Therefore P is a nonsingular matrix. �

The matrix T was used also in [2] to establish the eigenstructure of the classical Bernstein operator.
An useful property of T is that T is a positive definite -see Proposition 5.1 in [5]. Using this fact the
following was proved in Lemma 4.3 in [1], which we formulate here as

Lemma 2 For i = 0, 1, . . . , n we have 0 < λi(T ) ≤ 1, where λi(T ) are the eigenvalues of T .
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Lemma 2 implies that ρ(I − T ) < 1 where ρ(I − T ) is the spectral radius of the matrix I − T , with I-the
identity matrix. In [2] it was established that the eigenvalues of the operator Bn are given by

λ
(n)
k :=

n!
(n − k)!nk

, k = 0, 1, . . . , n.

Therefore
1 = λ

(n)
0 = λ

(n)
1 > λ

(n)
2 > . . . > λ(n)

n > 0.

If fk(x) is the eigenfunction of Bn corresponding to λ
(n)
k then

Bn(fk, x) = λ
(n)
k · fk(x). (2.1)

Consequently we arrive at

Lemma 3 The eigenvalues of T choincides with the eigenvalues of Bn.

Proof: In the representation (2.1) we set x = 0, 1
n , 2

n , . . . , 1 and obtain

T ∗ f̄k = λ
(n)
k · I ∗ f̄k,

where f̄k = [fk(0), fk( 1
n ), . . . , fk(1)]t. The last equation implies that

det
(
T − λ

(n)
k · I

)
= 0,

i.e. λ
(n)
k is an eigenvalue of T . �

The next statement is well known from the theory of linear algebra, namely

Lemma 4 If A is a square matrix with ρ(A) < 1 then the matrix I − A is invertible and we have

(I − A)−1 = I + A + A2 + . . . .

If we set A := I − T in the last formula we obtain

Lemma 5 The matrix T is invertible and we have

T−1 = I + (I − T ) + (I − T )2 + . . . =
∞∏

m=0

(I − T )m. (2.2)

Lemma 5 gives another proof of the property of T formulated in Lemma 1 and in addition the useful
representation of the inverse matrix T−1. We end our study of T with the following observation (see
Lemma 2.2 in [4]):

Lemma 6 All rows of T and T−1 sum to 1.

Let us calculate T explicitly for n = 1, 2, 3

n = 1 T =
(

1 0
0 1

)
, T−1 =

(
1 0
0 1

)

n = 2 T =

⎛
⎝ 1 0 0

1
4

1
2

1
4

0 0 1

⎞
⎠ , T−1 =

⎛
⎝ 1 0 0

−1
2 2 − 1

2
0 0 1

⎞
⎠

n = 3 T =

⎛
⎜⎜⎝

1 0 0 0
8
27

4
9

2
9

1
27

1
27

2
9

4
9

8
27

0 0 0 1

⎞
⎟⎟⎠ , T−1 =

⎛
⎜⎜⎝

1 0 0 0
−5

6 3 − 3
2

1
3

1
3 − 3

2 3 − 5
6

0 0 0 1

⎞
⎟⎟⎠ .
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Let f be arbitrary bounded function defined on [0, 1] and let x ∈ [0, 1]-be fixed. We may write recursively

f(x) = Bn(f, x) + r1(x)
r1(x) = Bn(r1, x) + r2(x)
r2(x) = Bn(r2, x) + r3(x)
. . .
rm(x) = Bn(rm, x) + rm+1(x).

(2.3)

It is easy to verify, that by the method introduced in (2.3) we construct a sequence of n-th degree algebraic
polynomials {B̃m(f, x)}∞m=0 defined by

B̃m(f, x) = b̄n(x) ∗
[

m∑
i=0

(I − T )i

]
∗ F̄ , (2.4)

which satisfy
f(x) = B̃m(f, x) + rm+1(x), m = 0, 1, 2, . . . (2.5)

It is easy to observe that

B̃0(f, x) = Bn(f, x)
B̃1(f, x) = Bn(f, x) + b̄n(x) ∗ (I − T ) ∗ F̄ =
= Bn(f, x) + Bn(f, x) − Bn ◦ Bn(f, x) =
= Bn(f, x) + Bn(f, x) − B2

n(f, x) =
= Bn(f, x) − Bn(f − Bnf, x),

(2.6)

where Bk
n := Bn◦Bn◦. . .◦Bn −k times is the k-th iterates of the Bernstein operator. By the definition of

the polynomial sequence {B̃m}∞m=0 in (2.4) we may consider B̃m as linear operator B̃m : C[0, 1] → C[0, 1].
It is clear from (2.6) that B̃m are not positive operators, like the Bernstein operator Bn. On the other
hand they interpolate the function f at the ends and it is natural to expect that B̃mf approximates f
at the point x better than Bnf . For example if f = e2 : x → x2, x ∈ [0, 1] it is known that (see Ch. 10
in [3])

B̃0(e2, x) = Bn(e2, x) = e2(x) + x(1−x)
n ,

B̃1(e2, x) = e2(x) + x(1−x)
n2 , . . .

B̃m(e2, x) = e2(x) + x(1−x)
nm+1 .

(2.7)

It is clear from (2.7) that the error of approximation of e2(x) by B̃m(e2, x) is essentially smaller than
by Bn(e2, x). It is known that the optimal rate of approximation for Bn is O( 1

n ), n → ∞ and if f(x) −
Bn(f, x) = ox( 1

n ), n → ∞, then f is linear function -see Theorem 5.1 in Ch. 10 in [3]. It is easy to
observe that for all m ≥ 0, B̃m preserves linear functions. So we may conclude that the loss of positivity
is compensate for by better degree of approximation. Consequently from (2.1) and (2.4) we get

B̃∞(f, x) = b̄n(x) ∗ T−1 ∗ F̄ . (2.8)

Lemma 7 The sequence of polynomials {B̃mf}∞m=0 uniformly tends to its limiting operator B̃∞f over
the interval [0, 1] when m → ∞.

Proof: The representations (2.4) and (2.8) imply

B̃∞(f, x) − B̃m(f, x) = b̄n(x) ∗
[ ∞∑

i=m+1

(I − T )i

]
∗ F̄ . (2.9)

By Lemma 5 we know that the power series (2.2) is convergent and this implies that the matrix

[
∞∑

i=m+1

(I − T )i] → 0 when m → ∞. This completes the proof. �
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By elementary calculations we obtain that if n = 2 the limiting operator B̃∞f preserves the monomial
functions ei, i = 0, 1, 2 and if n = 3 then B̃∞f preserves all ei, i = 0, 1, 2, 3. This could be generalized
for arbitrary natural number n. Theorem 1 implies that the operator B̃∞f reproduces all algebraic
polynomials of degree not greater than n.

Proof of Theorem 1
For a given function f let us denote by B̄nf the vector

B̄nf := [Bn(f, 0), Bn(f,
1
n

), . . . , Bn(f, 1)]t. (2.10)

It is clear that from (1.3) and the definition of T we get

B̄nf = T ∗ F̄ . (2.11)

In a similar way if we denote by

B̄∞ := [B̃∞(f, 0), B̃∞(f,
1
n

), . . . , B̃∞(f, 1)]t

then (2.8) and (2.11) imply
B̄∞ = T ∗ T−1 ∗ F̄ = I ∗ F̄ = F̄ , (2.12)

that is the n-th degree algebraic polynomial B̃∞(f, x) interpolates the function f at the knots
0, 1

n , 2
n , . . . , 1. On the other hand such an algebraic polynomial is uniquely defined and this is n-th

degree Lagrange interpolant Ln(f, x) for a given function f . Therefore we arrive at

B̃∞(f, x) ≡ Ln(f, x).

The proof of Theorem 1 is completed. �

3 Applications

A. Approximation properties
If f ∈ Cn+1[0, 1] then the remainder for Lagrange interpolant can be represented as

f(x) = Ln(f, x) +
(x − 0)(x − 1

n ) · · · (x − 1)
(n + 1)!

· f (n+1)(), (3.1)

for some ∈ (0, 1). This implies

Theorem 2 If f ∈ Cn+1 and ‖f (n+1)‖ ≤ Mn+1, where ‖ · ‖ denotes sup norm, then

‖f − Lnf‖ ≤ Mn+1

(n + 1)!
→ 0, n → ∞. (3.2)

Also using (2.9) and Lemma 3 we can easily prove

Theorem 3 For f ∈ C[0, 1] the following holds true

‖B̃∞f − B̃mf‖ ≤ ‖f‖ · (1 − λ(n)
n )m+1. (3.3)

Therefore
lim

m→∞ ‖B̃∞f − B̃mf‖ = 0.
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B. Applications in CAGD
Let us consider the vector-valued parametric-defined function f : [0, 1] → Rd, d ≥ 2. If f is n−th

degree algebraic polynomial, then as usual we associate with f(x) the d-dimensional polynomial curve
�C(x), namely

�C(x) = f(x), x ∈ [0, 1].

It is known from CAGD that any polynomial curve �C(x) may be represented in its Bernstein-Bézier form
as

�C(x) = b̄n(x) ∗ P̄ , (3.4)

where
P̄ := [P0, P1, . . . , Pn]t, Pi ∈ Rd, 0 ≤ i ≤ n,

denotes the control polygon of the curve and Pi are the control points of �C(x). From Theorem 1 we
immediately get

Corollary 1 For any polynomial curve �C(x), x ∈ [0, 1] the control points in its Bernstein-Bézier
representation can be computed by

P̄ = T−1 ∗ F̄ , (3.5)

where F̄ is defined in (1.3) and consists of points, lying on the curve.

Our next statement is inverse to the previous one. If now the vector of control points P̄ is given, then
we can easily compute the coordinates of the points �C( k

n ), 0 ≤ k ≤ n. Hence
Corollary 2 Let the curve �C be defined by (3.4). Then the vector F̄ can be computed by

F̄ = T ∗ P̄ . (3.6)

In [4] a subdivision algorithm was introduced, such that the control polygons, obtained in each step,
uniformly tend to the curve. Similar statement follows immediately from Theorem 1 and the sequence of
polynomials B̃m(f, x) defined in (2.4)

Corollary 3 The sequence of control polygons of the curves, associated with the polynomials B̃m(f, x)
uniformly w.r.t. x ∈ [0, 1] tends to the control polygon of the curve �C(x) = f(x).
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