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Abstract 

The problem of model checking is to verify if a finite-state abstraction of a reactive system satisfies 
a temporal-logic specification. A Computation Tree Logic (CTL) specification is interpreted over 
Kripke structures, which provide a model for the computations of a closed system (the behaviour is 
completely determined by the state of the system). In order to capture compositions of open systems, 
we present an extension of CTL, the alternating-time temporal logic (ATL), which is interpreted over 
game structures. In this paper we will show how our original ANTLR-based model checker for CTL 
can be modified to check an ATL specification, using a data structure suitable for multi-graph 
representation of a concurrent game structure. 

1 Introduction 
Model checking is a technology often used for the automated system verification. The model checking 
algorithms are currently used as verification techniques implemented in varied programming 
environments. The verified system can be a physical system or a real-time concurrent program. The 
behavior of a closed system can be described by the Kripke model. The Kripke models are based on 
the states and use the SMV (Symbolic Model Verifier) technique. The SMV model checking takes as 
input the model and formula then check whether or not the formula is satisfied or not by the model. [1] 

A Computation Tree Logic (CTL) model is defined as a directed graph and its semantics is 
interpreted over a Kripke structure. A Kripke model M over a set of atomic propositions, denoted by 
AP,  is a triple M=�S, Rel, P:S�2AP� where S is a finite set of states, Rel�S×S is a transition relation, 
and P:S�2AP is a function that assigns each state with a set of atomic propositions from AP.  

CTL model checker is branching-time logic, meaning that its formulas are interpreted over all paths 
beginning in a given state of the Kripke structure.  

For each state from graph M there is a successor and a path composed by a sequence of some 
states.  

Details about formal definitions for syntax and semantics of a CTL model checker can be found in 
paper [3]. 

A Kripke structure offers a natural model for the computations of a closed system, whose 
behavior is completely determined by the state of the system. The compositional modeling and 
design of reactive systems requires each component to be viewed as an open system. 
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An open system is a system that interacts with its environment and whose behaviour depends 
on the state of the system as well as the behaviour of the environment. In order to construct 
models suitable for open systems, was defined the Alternating-time Temporal Logic (ATL) [5]. 

ATL extends CTL by replacing the path quantifier’s and by cooperation modalities �A�, 
where A is a team of agents. A formula �A� � expresses that the team A has a collective strategy to 
enforce �. 

ATL is a branching-time temporal logic that naturally describes computations of multi-agent 
system and multiplayer games. It offers selective quantification over program-paths that are 
possible outcomes of games [5]. ATL uses alternating-time formulas to construct model-checkers 
in order to address problems such as receptiveness, realizability, and controllability.  

Over structures without fairness constraints, the model-checking complexity of ATL is linear 
in the size of the game structure and length of the formula, and the symbolic model-checking 
algorithm for CTL extends with few modifications to ATL. 

From a formal point of view, implementation of a CTL model checker will be equated with 
implementation of an algebraic compiler which can be defined using � – algebras and �– heterogenic 
homomorphism as C:Ls�Lt, where Ls is the source language and Lt  is the target language. The source 
language Ls is CTL, and the target language Lt is a language which describes the set of nodes from the 
model M where a CTL formulas f is satisfied. The algebraic compiler C translates formula f of the 
CTL model to set of nodes S' over which formula f is satisfied. That is, C(f)=S' where S'={s�S| (M,s) 
� f}. 

The CTL language is defined as a � – language [2]. The operator scheme �ctl  is defined as a triple 
�Sctl,Octl,�ctl�  where set Sctl contains the representations of the CTL formulas, Octl = {�, �, �, 	, 
, �, 

AX, EX, AU, EU, EF, AF, EG, AG} is the set of operators,  and the �ctl:Octl�Sctl
�×Sctl is a function 

which defines the signature of the operators [2]. The CTL model checker can be defined as the �ctl - 
language given in the form Lctl=�Semctl, Synctl, Lctl:Semctl�Synctl� where Synctl is the word algebra of 
the operator scheme �ctl generated by the operations from Octl and a finite set of variables, representing 
atomic propositions, denoted by AP. Semctl represents CTL semantic algebra defined over the set of 
CTL formulas which are satisfied  by the CTL model M. Lctl is a mapping which associates the set of 
satisfied formulas from Semctl to CTL expressions from Sinctl which satisfy these formulas. [4] 

In the same way we can define the ATL language. The operator scheme �atl  is defined as a triple 
�Satl,Oatl,�atl�  where set Satl  contains the representations of the ATL formulas, Oatl = {�, 
, 	,�, �, 

�, �, U} is the set of operators,  and the �atl:Oatl�Satl
�×Satl is a function which defines the signature of 

the operators. The � (‘future’), � (‘next’), � (‘always’), and U (‘until’) are temporal operators. The 
ATL model checker can be defined as the �atl - language given in the form Latl=�Sematl, Synatl, 
Latl:Sematl�Synatl� where Synatl is the word algebra of the operator scheme �atl generated by the 
operations from Oatl and a finite set of variables, representing atomic propositions, denoted by AP. 
Sematl represents ATL semantic algebra defined over the set of ATL formulas which are satisfied  by 
the ATL model M. Latl is a mapping which associates the set of satisfied formulas from Sematl to 
ATL expressions from Sinatl which satisfy these formulas. 

Having well-defined the ATL language, implementation of a ATL model checker will be equated 
with an algebraic compiler which translates a formula f of the ATL model to set of nodes Q' over 
which formula f is satisfied. 

The Kripke structure is a natural “common-denominator” model for closed systems, 
independent of the high-level description of a system (given by example as a product of state 
machines). 

In analogy, the natural “common-denominator” model for compositions of open systems is the 
concurrent game structure. 
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Thus, unlike CTL which is interpreted over Kripke structures, the ATL is interpreted over 
game structures. In order to capture compositions of open systems, we consider multi players 
games in which the set of players represents different component of the system and the 
environment. 

The remainder of this paper is organized as follows. In section 2 we present a formal definition 
of concurrent game structures. In section 3 is presented the ATL logic with its syntax and 
semantics. A Java implementation of ATL model checker based on ANTLR is described in 
section 4. Conclusions are presented in section 5. 

2 Concurrent game structures 
Concurrent game structures can be used to model compositions of open systems. Unlike in Kripke 

structures, in a concurrent game structure, the environment is involved a state transition. The 
environment is modelled by a set of agents. Each agent may perform some actions and at least one 
action is available to the agent at each state. 

2.1 Definition
A concurrent game structure is a tuple S=�k,Q,�,,d,�� with the following components [5]:  
• A natural number k � 1 of players. We identify the players with numbers 1,…,k. 
• A finite set Q of states 
• A finite set � of propositions (also called observables) 
• For each state q�Q, a set (q)� � of propositions true at q. The function  is called 

labeling (or observation) function. 
• For each player a�{1,…,k} and each state q�Q, we identify the moves of player a at state 

q with the numbers 1,…, da(q), where da(q)�1 represents the number of available moves. 
For each state q�Q, a move vector at q is a tuple �j1,…,jk� such that 1�ja �da(q) for each 
player a. Given a state q�Q, we write D(q) for the set {1,…, d1(q)}�… �{1,…, dk(q)} of 
moves vector. The function D is called move function. 

• For each state q�Q and each move vector �j1,…,jk� � D(q), �(q,j1,…,jk)�Q represents the 
state that results from state q if every player a�{1,…,k} choose move ja. The function � is 
called transition function. 

The number of states of the structure S is n =|Q|. The number of transitions of S is m = �q�Q 
d1(q)×…×dk(q), that is, the total number of elements in the move function D. Note that unlike in 
Kripke structures, the number of transitions is not bounded by n2. For a fixed alphabet ��  of 
propositions, the size of S is O(m). [5] 

We refer to a computation starting at state q as a q-computation. For a computation � and a 
position i �0, we use � [i ], � [0,i ], and � [i,�] to denote the i-th state of �, the finite prefix q0, q1,…,qi 
of �, and the infinite suffix qi , qi+1 … of �, respectively. [5] 

2.2 Example of a concurrent game structure 

Consider a system with two processes, Px and Py. The process Px assigns values to the Boolean 
variable x. When x=false, then Px can leave the value of x unchanged or change it in true. When 
x=true, then Px leaves the value of x unchanged. The process Py assigns values to the Boolean 
variable y, in the same way as the process Px. 
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Fig. 1: An example of a concurrent game structure (Sxy) 
 

We model the synchronous composition of two processes by the Sxy concurrent game structure, 
where Sxy=�k,Q,�,,d,��  

� k=2 (player 1 represents process Px, player 2 represents process Py)  
� Q={q0,q1,q2,q3} – q0 means x=y=false,  
                                q1 means x=true and y=false, etc.  
� �={x,y}  
� (q0)=�, (q1)={x}, (q2)={y}, (q3)={x,y}  
� d1(q0)= d1(q2)=2 (means in state q0 and q2 move 1 of player 1 leave the value of x 

unchanged, and move two changes the value of x)  
d1(q1)= d1(q3)=1 (means in state q1 and q3 player 1 has only one move, namely, to leave the 
value of x unchanged)  
d2(q0)= d2(q1)=2, d2(q2)= d2(q3)=1 
� state q0 has four successors: �(q0,1,1)= q0, �(q0,1,2)=q2,  �(q0,2,1)=q1, �(q0,2,2)=q3  
A concurrent game is played on a state space. Every player chooses a move. The combination 

of choices determines a transition from the current state to a successor state. 
The game structure presented in figure 1 is classified as a Moore synchronous game structure. 

That is, the state is partitioned according to the players. In each step, every player updates its own 
component of the state independently of the other players. The Moore subclass of concurrent 
game structures captures various notions of synchronous interaction between open systems. 

3 ATL Logic 

Alternating-time Temporal Logic (ATL) is a branching-time temporal logic that naturally describes 
computations of multi-agent system and multiplayer games. It offers selective quantification over 
program-paths that are possible outcomes of games [5].

3.1. ATL syntax 
The temporal logic ATL is defined with respect to a finite set �� of propositions and a finite set �
�={1,…,k} of players.  
An ATL formula is one of the following:  
(S1) p, for propositions p��  
(S2) 	 � or �1
 �2, where �, �1 and �2 are ATL formulas  
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(S3) ���A�� �  � , ��A�� � �, or ��A�� �1 U �2, where A �� � is a set of players, and �, �1 and �2 are 
ATL formulas. 
 The operator ��� �� is a path quantifier, and � (‘next’), � (‘always’), and U (‘until’) are temporal 
operators. The logic ATL is similar to the branching time temporal logic CTL, only that path 
quantifiers are parameterized by sets of players. Sometimes we write � ��a1,…,ak�� instead of 
��{a1,…,ak}��, and ��� �� instead of ������. Additional Boolean connectives are defined from 	 and 

 in the usual manner. Similar to CTL, we write ���A�� �� for ��A�� true U �.  

3.2. ATL semantics 

Consider a game structure S=�k,Q,�,,d,��.  
�={1,…,k} denote the set of players.  

A strategy for player a�� is a function fa that maps every nonempty finite state sequence 
��Q+ to a natural number such that if the last state of � is q, then fa(�) �da(q). Thus, the strategy 
fa determines for every finite prefix � of a computation a move fa(�) for player a. Each strategy fa 
for player a induces a set of computations that player a can enforce.  

Given a state q�Q,  a set A�{1,…,k} of players, and a set FA={ fa | a�A} of strategies, one 
for each player in A, we define the outcomes of FA from q to be the set out(q, FA) of q-
computations that the players in A enforce when they follow the strategies in FA;  

A computation �=q0,q1,q2,… is in out(q,FA) if q0=q and for all positions i�0, there is a move 
vector �j1,…,jk� � D(qi) such that  

� ja=fa(�[0,i]) for all players a�A, and  
� �(qi, j1,…,jk)= qi+1  
 
Formal definition of ATL semantics is to consider a game structure S=�k,Q,�,,d,��. We 

write S, q�� to indicate that the state q satisfies the formula � in the structure S. When S is clear 
from the context, we omit it and write q��.  

The satisfaction relation � is defined, for all states q of S inductively as follows:  
� q�p, for propositions p��, iff p�(q)  
� q��� iff q	�  
� q��1
�2 iff q��1 or q��2 
� q���A�� � � iff there exists a set FA of strategies, one for each player in A, such that for 

all computations ��out(q, FA), we have �[1] � �  
� q���A�� � � iff there exists a set FA of strategies, one for each player in A, such that for 

all computations ��out(q, FA), and all positions i�0, we have �[i] � �  
� q���A�� �1 U �2 iff there exists a set FA of strategies, one for each player in A, such that 

for all computations ��out(q, FA), there exists a position i�0 such that �[i] � �2 and for 
all positions 0�j�i, we have �[j] � �1 

 
ATL can naturally express properties of open system [5]. Properties is the absence of 

deadlocks, where deadlock state is one in which a thread, say t, is permanently blocked from 
accessing a critical section.  

In the following is described this requirement using the CTL formula, respectively ATL 
formula. 

The CTL formula only asserts that it is always possible for all threads to cooperate so that t 
can eventually read and write (“collaborative possibility”)  
                                  �� (� 
 read 	 � 
 write)       

The ATL formula guarantees execution of the critical section by the thread t, no matter what 
the other threads in the system do (“adversarial possibility”)  
                                   �� (��t��
read 	 ��t��
write)  
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The path quantifiers A, E of CTL can be expressed in ATL with ��
��, ����� respectively. As a 
consequence, the CTL duality axioms can be rewritten in ATL, and become validities in the basic 
semantics: ¬����� � � � ��
���¬ �, ¬��
�� � � � ������¬ �, where the ��{1,…,k} describe the set of 
agents. 

4   An ANTLR – Java implementation of ATL model checker 
4.1 ATL Symbolic Model Checking  

Model checking is a technology often used for the automated system verification.  
� The model checking algorithms are currently used as verification techniques 

implemented in varied programming environments.  
� The verified system can be a physical system or a real-time concurrent program.  
� A model checking tool can be used to verify if a given system satisfies a temporal 

logic formula. 
� The model checking problem for ATL: given a game structure S=�k,Q,�,,d,�� and an 

ATL formula � the task is to find the set of states in Q that satisfy �. 
In order to solve the ATL model checking problem we designed and implemented an algebraic 
compiler denoted with C.   

4.2   ATL algorithm 

The algebraic compiler C translates formula � of the ATL model to set of nodes Q' over which 
formula � is satisfied. That is, C (�)=Q' where Q'={q�Q| q� �}. 

The implementation of the algebraic compiler C is made in two steps.  
� First, we need a syntactic parser to verify the syntactic correctness of a formula �.  
� Then, we should deal with the semantics of the ATL language, respectively with the 

implementation of the ATL operators from the set {�, 
, 	,�, �, �, �, U}.  
For implementation of the algebraic compiler we choose the ANTLR (Another Tool for 

Language Recognition). ANTLR is a compiler generator which takes as input a grammar - an 
exact description of the source language, and generates a recognizer for the language defined 
by the grammar.  

The algebraic compiler C implements the following ATL symbolic model checking 
algorithm: 
 
Function EvalA(�) as set of states � Q 
 case �=p:  

return [p]; 
 case �= ��:  

return Q\EvalA(�); 
 case �=�1
�2:  

return EvalA(�1)� EvalA(�2); 
case �=�1	�2:  

return EvalA(�1) � EvalA(�2) ); 
case �=�1��2:  

return ( Q\EvalA(�1) ) � EvalA(�2); 
 case � =��A����:  

return Pre(A,EvalA(�)); 
 case � =��A����: 
   ��:=Q;  := EvalA(�);  0:=  ; 
   while � �   do 
       � :=  ; 
    :=Pre(A, �)� 0; 
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                       wend 
            return ��; 
 case � = ��A�� �1 U �2: 

��:=��;  := EvalA(�2);  0:= EvalA(�1); 
 while � �   do 

       � := � �  ; 
    :=Pre(A, �)� 0; 
                          wend 

return ��; 
End Function 

 
The Pre(A,�) function, where A�� and ��Q, returns the set of states q such that from q, 

the players in A can cooperate and enforce the next state to be in �. 
Pre(A,�) contains state q�Q if for every player a �A  there exists a move ja � {1,…,da(q)} 
such that for all players b��\A whatever are their moves we have �(q, j1,…, jk) ��  

In order to translate a formula � of an ATL model to the set of nodes Q' over which 
formula � is satisfied, is necessary the attachment of specific actions to grammatical 
constructions within specification grammar of ATL.  

The actions are written in target language of the generated parser (in our case, Java). 
These actions are incorporated in source code of the parser and are activated whenever the 
parser recognizes a valid syntactic construction in the translated ATL formula. In case of the 
algebraic compiler C, the actions define the semantics of the ATL model checker, i.e., the 
implementation of the ATL operators.  

The model checker generated by ANTLR from our specification grammar of ATL, takes 
as input the concurrent game structure S and formula �, and provides as output the set 
Q'={q�Q| q� �} – the set of states where the formula �  is satisfied.  

The corresponding action included in the ANTLR grammar of ATL language for 
implementing the � operator is:  
 
’<<A>> #’ f=formula 
{ 
HashSet r = new HashSet(all_SetS); 
HashSet p = $f.set; 
while (!p.containsAll(r)) 
{ 
    r = new HashSet(p); 
    p = Pre(r); 
    p.retainAll($f.set); 
} 
$set = r; 
trace(”atlFormula”,4); 
printSet(”<<A>>#”+$f.text,r); 
}  

Fig. 2: ANTLR implementation of � operator 

For ATL operator �, in ANTLR we use the # symbol. 
In our implementation the all_Set is Q, and means all the state from model. The formula 

represents a term from a production of the ATL grammar and p, r, f  variables are sets used in internal 
implementation of the algebraic compiler. 

The Pre(r) is a function that returns the set of states p such that from p, the players in A 
can cooperate and enforce the next state to be in r.  

The code from figure 2 represents the implementation of the � ATL operator which is 
described in the symbolic model checking algorithm as: 
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Function EvalA(�) as set of states � Q 
 … 
 case � =��A����: 
   ��:=Q;  := EvalA(�);  0:=  ; 
   while � �   do 
       � :=  ; 
    :=Pre(A, �)� 0; 
                       wend 
            return ��; 
 … 
endfunction 

Fig. 3 The � ATL operator from the model checking algorithm 
 

In figure 4 is represented the algebraic compiler implementation process, based on our 
specification grammar of ATL language. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Algebraic compiler implementation
 

For verification of formula � = <<A>> � (x 
 y) we can use the ANTLR debugging 
facility to visualize the Abstract Syntactic Tree (AST), presented in the figure 5.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5:  Abstract Syntactic Tree (AST) 
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The AST is decorated with actions automatically executed when the parser recognizes 
syntactic components of formula �. These actions implement the algebraic compiler C. The 
output of C is presented in figure 6. 

Given the ATL formula � = <<A>> � (x 	 y) for game structure from figure 1 with 
A={2}, the output of the model checker is Q� = {1,3}. From state q1 if player 2 chooses the 
move 2 the next state is q3 whatever is the move selected by the player 1. From the state q2 for 
the move 1 of the player 2, the player 1 can choose the move 1. Thus the game remains in 
state q2. For that reason the state 2!Q�. 

 

 
 

 
 

Fig. 6:  The output of compiler C for 
ATL formula <<A>> � (x 
 y) 

 

Fig. 7: Output of the model checker for ATL 
formula <<A>> � (x 	 y) 

5   Conclusion 
In this article we built a CTL model checking tool, based on robust technologies (Java, 

ANTLR) 
As a great facility we mention the capability of interactive debugging / visualization of 

the execution of the symbolic model checking algorithm. 
The ATL algebraic compiler based on Java code generated by ANTLR using an original 

ATL grammar provides error-handling for eventual lexical/syntax errors in formula to be 
translated.  
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