
Second International Conference

Modelling and Development of Intelligent Systems

Sibiu - Romania, September 29 - October 02, 2011

Considerations about the implementation of an ATL model
checker

Laura Florentina Stoica, Florin Stoica

Abstract

The problem of model checking is to verify if a finite-state abstraction of a reactive system satisfies
a temporal-logic specification. A Computation Tree Logic (CTL) specification is interpreted over
Kripke structures, which provide a model for the computations of a closed system (the behaviour is
completely determined by the state of the system). In order to capture compositions of open systems,
we present an extension of CTL, the alternating-time temporal logic (ATL), which is interpreted over
game structures. In this paper we will show how our original ANTLR-based model checker for CTL
can be modified to check an ATL specification, using a data structure suitable for multi-graph
representation of a concurrent game structure.

1 Introduction
Model checking is a technology often used for the automated system verification. The model checking
algorithms are currently used as verification techniques implemented in varied programming
environments. The verified system can be a physical system or a real-time concurrent program. The
behavior of a closed system can be described by the Kripke model. The Kripke models are based on
the states and use the SMV (Symbolic Model Verifier) technique. The SMV model checking takes as
input the model and formula then check whether or not the formula is satisfied or not by the model. [1]

A Computation Tree Logic (CTL) model is defined as a directed graph and its semantics is
interpreted over a Kripke structure. A Kripke model M over a set of atomic propositions, denoted by
AP, is a triple M=�S, Rel, P:S�2AP� where S is a finite set of states, Rel�S×S is a transition relation,
and P:S�2AP is a function that assigns each state with a set of atomic propositions from AP.

CTL model checker is branching-time logic, meaning that its formulas are interpreted over all paths
beginning in a given state of the Kripke structure.

For each state from graph M there is a successor and a path composed by a sequence of some
states.

Details about formal definitions for syntax and semantics of a CTL model checker can be found in
paper [3].

A Kripke structure offers a natural model for the computations of a closed system, whose
behavior is completely determined by the state of the system. The compositional modeling and
design of reactive systems requires each component to be viewed as an open system.

170

�

�
Laura Florentina Stoica, Florin Stoica��

��

�

An open system is a system that interacts with its environment and whose behaviour depends
on the state of the system as well as the behaviour of the environment. In order to construct
models suitable for open systems, was defined the Alternating-time Temporal Logic (ATL) [5].

ATL extends CTL by replacing the path quantifier’s and by cooperation modalities �A�,
where A is a team of agents. A formula �A� � expresses that the team A has a collective strategy to
enforce �.

ATL is a branching-time temporal logic that naturally describes computations of multi-agent
system and multiplayer games. It offers selective quantification over program-paths that are
possible outcomes of games [5]. ATL uses alternating-time formulas to construct model-checkers
in order to address problems such as receptiveness, realizability, and controllability.

Over structures without fairness constraints, the model-checking complexity of ATL is linear
in the size of the game structure and length of the formula, and the symbolic model-checking
algorithm for CTL extends with few modifications to ATL.

From a formal point of view, implementation of a CTL model checker will be equated with
implementation of an algebraic compiler which can be defined using � – algebras and �– heterogenic
homomorphism as C:Ls�Lt, where Ls is the source language and Lt is the target language. The source
language Ls is CTL, and the target language Lt is a language which describes the set of nodes from the
model M where a CTL formulas f is satisfied. The algebraic compiler C translates formula f of the
CTL model to set of nodes S' over which formula f is satisfied. That is, C(f)=S' where S'={s�S| (M,s)
� f}.

The CTL language is defined as a � – language [2]. The operator scheme �ctl is defined as a triple
�Sctl,Octl,�ctl� where set Sctl contains the representations of the CTL formulas, Octl = {�, �, �, 	,
, �,

AX, EX, AU, EU, EF, AF, EG, AG} is the set of operators, and the �ctl:Octl�Sctl
�×Sctl is a function

which defines the signature of the operators [2]. The CTL model checker can be defined as the �ctl -
language given in the form Lctl=�Semctl, Synctl, Lctl:Semctl�Synctl� where Synctl is the word algebra of
the operator scheme �ctl generated by the operations from Octl and a finite set of variables, representing
atomic propositions, denoted by AP. Semctl represents CTL semantic algebra defined over the set of
CTL formulas which are satisfied by the CTL model M. Lctl is a mapping which associates the set of
satisfied formulas from Semctl to CTL expressions from Sinctl which satisfy these formulas. [4]

In the same way we can define the ATL language. The operator scheme �atl is defined as a triple
�Satl,Oatl,�atl� where set Satl contains the representations of the ATL formulas, Oatl = {�,
, 	,�, �,

�, �, U} is the set of operators, and the �atl:Oatl�Satl
�×Satl is a function which defines the signature of

the operators. The � (‘future’), � (‘next’), � (‘always’), and U (‘until’) are temporal operators. The
ATL model checker can be defined as the �atl - language given in the form Latl=�Sematl, Synatl,
Latl:Sematl�Synatl� where Synatl is the word algebra of the operator scheme �atl generated by the
operations from Oatl and a finite set of variables, representing atomic propositions, denoted by AP.
Sematl represents ATL semantic algebra defined over the set of ATL formulas which are satisfied by
the ATL model M. Latl is a mapping which associates the set of satisfied formulas from Sematl to
ATL expressions from Sinatl which satisfy these formulas.

Having well-defined the ATL language, implementation of a ATL model checker will be equated
with an algebraic compiler which translates a formula f of the ATL model to set of nodes Q' over
which formula f is satisfied.

The Kripke structure is a natural “common-denominator” model for closed systems,
independent of the high-level description of a system (given by example as a product of state
machines).

In analogy, the natural “common-denominator” model for compositions of open systems is the
concurrent game structure.

171

�

�
Considerations about the implementation of an ATL model checker�

�

Thus, unlike CTL which is interpreted over Kripke structures, the ATL is interpreted over
game structures. In order to capture compositions of open systems, we consider multi players
games in which the set of players represents different component of the system and the
environment.

The remainder of this paper is organized as follows. In section 2 we present a formal definition
of concurrent game structures. In section 3 is presented the ATL logic with its syntax and
semantics. A Java implementation of ATL model checker based on ANTLR is described in
section 4. Conclusions are presented in section 5.

2 Concurrent game structures
Concurrent game structures can be used to model compositions of open systems. Unlike in Kripke

structures, in a concurrent game structure, the environment is involved a state transition. The
environment is modelled by a set of agents. Each agent may perform some actions and at least one
action is available to the agent at each state.

2.1 Definition
A concurrent game structure is a tuple S=�k,Q,�,,d,�� with the following components [5]:
• A natural number k � 1 of players. We identify the players with numbers 1,…,k.
• A finite set Q of states
• A finite set � of propositions (also called observables)
• For each state q�Q, a set (q)� � of propositions true at q. The function is called

labeling (or observation) function.
• For each player a�{1,…,k} and each state q�Q, we identify the moves of player a at state

q with the numbers 1,…, da(q), where da(q)�1 represents the number of available moves.
For each state q�Q, a move vector at q is a tuple �j1,…,jk� such that 1�ja �da(q) for each
player a. Given a state q�Q, we write D(q) for the set {1,…, d1(q)}�… �{1,…, dk(q)} of
moves vector. The function D is called move function.

• For each state q�Q and each move vector �j1,…,jk� � D(q), �(q,j1,…,jk)�Q represents the
state that results from state q if every player a�{1,…,k} choose move ja. The function � is
called transition function.

The number of states of the structure S is n =|Q|. The number of transitions of S is m = �q�Q
d1(q)×…×dk(q), that is, the total number of elements in the move function D. Note that unlike in
Kripke structures, the number of transitions is not bounded by n2. For a fixed alphabet �� of
propositions, the size of S is O(m). [5]

We refer to a computation starting at state q as a q-computation. For a computation � and a
position i �0, we use � [i], � [0,i], and � [i,�] to denote the i-th state of �, the finite prefix q0, q1,…,qi
of �, and the infinite suffix qi , qi+1 … of �, respectively. [5]

2.2 Example of a concurrent game structure

Consider a system with two processes, Px and Py. The process Px assigns values to the Boolean
variable x. When x=false, then Px can leave the value of x unchanged or change it in true. When
x=true, then Px leaves the value of x unchanged. The process Py assigns values to the Boolean
variable y, in the same way as the process Px.

172

�

�
Laura Florentina Stoica, Florin Stoica��

��

�

Fig. 1: An example of a concurrent game structure (Sxy)

We model the synchronous composition of two processes by the Sxy concurrent game structure,
where Sxy=�k,Q,�,,d,��

� k=2 (player 1 represents process Px, player 2 represents process Py)
� Q={q0,q1,q2,q3} – q0 means x=y=false,
 q1 means x=true and y=false, etc.
� �={x,y}
� (q0)=�, (q1)={x}, (q2)={y}, (q3)={x,y}
� d1(q0)= d1(q2)=2 (means in state q0 and q2 move 1 of player 1 leave the value of x

unchanged, and move two changes the value of x)
d1(q1)= d1(q3)=1 (means in state q1 and q3 player 1 has only one move, namely, to leave the
value of x unchanged)
d2(q0)= d2(q1)=2, d2(q2)= d2(q3)=1
� state q0 has four successors: �(q0,1,1)= q0, �(q0,1,2)=q2, �(q0,2,1)=q1, �(q0,2,2)=q3
A concurrent game is played on a state space. Every player chooses a move. The combination

of choices determines a transition from the current state to a successor state.
The game structure presented in figure 1 is classified as a Moore synchronous game structure.

That is, the state is partitioned according to the players. In each step, every player updates its own
component of the state independently of the other players. The Moore subclass of concurrent
game structures captures various notions of synchronous interaction between open systems.

3 ATL Logic

Alternating-time Temporal Logic (ATL) is a branching-time temporal logic that naturally describes
computations of multi-agent system and multiplayer games. It offers selective quantification over
program-paths that are possible outcomes of games [5].

3.1. ATL syntax
The temporal logic ATL is defined with respect to a finite set �� of propositions and a finite set �
�={1,…,k} of players.
An ATL formula is one of the following:
(S1) p, for propositions p��
(S2) 	 � or �1
 �2, where �, �1 and �2 are ATL formulas

173

�

�
Considerations about the implementation of an ATL model checker�

�

(S3) ���A�� � � , ��A�� � �, or ��A�� �1 U �2, where A �� � is a set of players, and �, �1 and �2 are
ATL formulas.
 The operator ��� �� is a path quantifier, and � (‘next’), � (‘always’), and U (‘until’) are temporal
operators. The logic ATL is similar to the branching time temporal logic CTL, only that path
quantifiers are parameterized by sets of players. Sometimes we write � ��a1,…,ak�� instead of
��{a1,…,ak}��, and ��� �� instead of ������. Additional Boolean connectives are defined from 	 and

 in the usual manner. Similar to CTL, we write ���A�� �� for ��A�� true U �.

3.2. ATL semantics

Consider a game structure S=�k,Q,�,,d,��.
�={1,…,k} denote the set of players.

A strategy for player a�� is a function fa that maps every nonempty finite state sequence
��Q+ to a natural number such that if the last state of � is q, then fa(�) �da(q). Thus, the strategy
fa determines for every finite prefix � of a computation a move fa(�) for player a. Each strategy fa
for player a induces a set of computations that player a can enforce.

Given a state q�Q, a set A�{1,…,k} of players, and a set FA={ fa | a�A} of strategies, one
for each player in A, we define the outcomes of FA from q to be the set out(q, FA) of q-
computations that the players in A enforce when they follow the strategies in FA;

A computation �=q0,q1,q2,… is in out(q,FA) if q0=q and for all positions i�0, there is a move
vector �j1,…,jk� � D(qi) such that

� ja=fa(�[0,i]) for all players a�A, and
� �(qi, j1,…,jk)= qi+1

Formal definition of ATL semantics is to consider a game structure S=�k,Q,�,,d,��. We

write S, q�� to indicate that the state q satisfies the formula � in the structure S. When S is clear
from the context, we omit it and write q��.

The satisfaction relation � is defined, for all states q of S inductively as follows:
� q�p, for propositions p��, iff p�(q)
� q��� iff q	�
� q��1
�2 iff q��1 or q��2
� q���A�� � � iff there exists a set FA of strategies, one for each player in A, such that for

all computations ��out(q, FA), we have �[1] � �
� q���A�� � � iff there exists a set FA of strategies, one for each player in A, such that for

all computations ��out(q, FA), and all positions i�0, we have �[i] � �
� q���A�� �1 U �2 iff there exists a set FA of strategies, one for each player in A, such that

for all computations ��out(q, FA), there exists a position i�0 such that �[i] � �2 and for
all positions 0�j�i, we have �[j] � �1

ATL can naturally express properties of open system [5]. Properties is the absence of

deadlocks, where deadlock state is one in which a thread, say t, is permanently blocked from
accessing a critical section.

In the following is described this requirement using the CTL formula, respectively ATL
formula.

The CTL formula only asserts that it is always possible for all threads to cooperate so that t
can eventually read and write (“collaborative possibility”)
 �� (�
 read 	 �
 write)

The ATL formula guarantees execution of the critical section by the thread t, no matter what
the other threads in the system do (“adversarial possibility”)
 �� (��t��
read 	 ��t��
write)

174

�

�
Laura Florentina Stoica, Florin Stoica��

��

�

The path quantifiers A, E of CTL can be expressed in ATL with ��
��, ����� respectively. As a
consequence, the CTL duality axioms can be rewritten in ATL, and become validities in the basic
semantics: ¬����� � � � ��
���¬ �, ¬��
�� � � � ������¬ �, where the ��{1,…,k} describe the set of
agents.

4 An ANTLR – Java implementation of ATL model checker
4.1 ATL Symbolic Model Checking

Model checking is a technology often used for the automated system verification.
� The model checking algorithms are currently used as verification techniques

implemented in varied programming environments.
� The verified system can be a physical system or a real-time concurrent program.
� A model checking tool can be used to verify if a given system satisfies a temporal

logic formula.
� The model checking problem for ATL: given a game structure S=�k,Q,�,,d,�� and an

ATL formula � the task is to find the set of states in Q that satisfy �.
In order to solve the ATL model checking problem we designed and implemented an algebraic
compiler denoted with C.

4.2 ATL algorithm

The algebraic compiler C translates formula � of the ATL model to set of nodes Q' over which
formula � is satisfied. That is, C (�)=Q' where Q'={q�Q| q� �}.

The implementation of the algebraic compiler C is made in two steps.
� First, we need a syntactic parser to verify the syntactic correctness of a formula �.
� Then, we should deal with the semantics of the ATL language, respectively with the

implementation of the ATL operators from the set {�,
, 	,�, �, �, �, U}.
For implementation of the algebraic compiler we choose the ANTLR (Another Tool for

Language Recognition). ANTLR is a compiler generator which takes as input a grammar - an
exact description of the source language, and generates a recognizer for the language defined
by the grammar.

The algebraic compiler C implements the following ATL symbolic model checking
algorithm:

Function EvalA(�) as set of states � Q
 case �=p:

return [p];
 case �= ��:

return Q\EvalA(�);
 case �=�1
�2:

return EvalA(�1)� EvalA(�2);
case �=�1	�2:

return EvalA(�1) � EvalA(�2));
case �=�1��2:

return (Q\EvalA(�1)) � EvalA(�2);
 case � =��A����:

return Pre(A,EvalA(�));
 case � =��A����:
 ��:=Q; := EvalA(�); 0:= ;
 while � � do
 � := ;
 :=Pre(A, �)� 0;

175

�

�
Considerations about the implementation of an ATL model checker�

�

 wend
 return ��;
 case � = ��A�� �1 U �2:

��:=��; := EvalA(�2); 0:= EvalA(�1);
 while � � do

 � := � � ;
 :=Pre(A, �)� 0;
 wend

return ��;
End Function

The Pre(A,�) function, where A�� and ��Q, returns the set of states q such that from q,

the players in A can cooperate and enforce the next state to be in �.
Pre(A,�) contains state q�Q if for every player a �A there exists a move ja � {1,…,da(q)}
such that for all players b��\A whatever are their moves we have �(q, j1,…, jk) ��

In order to translate a formula � of an ATL model to the set of nodes Q' over which
formula � is satisfied, is necessary the attachment of specific actions to grammatical
constructions within specification grammar of ATL.

The actions are written in target language of the generated parser (in our case, Java).
These actions are incorporated in source code of the parser and are activated whenever the
parser recognizes a valid syntactic construction in the translated ATL formula. In case of the
algebraic compiler C, the actions define the semantics of the ATL model checker, i.e., the
implementation of the ATL operators.

The model checker generated by ANTLR from our specification grammar of ATL, takes
as input the concurrent game structure S and formula �, and provides as output the set
Q'={q�Q| q� �} – the set of states where the formula � is satisfied.

The corresponding action included in the ANTLR grammar of ATL language for
implementing the � operator is:

’<<A>> #’ f=formula
{
HashSet r = new HashSet(all_SetS);
HashSet p = $f.set;
while (!p.containsAll(r))
{
 r = new HashSet(p);
 p = Pre(r);
 p.retainAll($f.set);
}
$set = r;
trace(”atlFormula”,4);
printSet(”<<A>>#”+$f.text,r);
}

Fig. 2: ANTLR implementation of � operator

For ATL operator �, in ANTLR we use the # symbol.
In our implementation the all_Set is Q, and means all the state from model. The formula

represents a term from a production of the ATL grammar and p, r, f variables are sets used in internal
implementation of the algebraic compiler.

The Pre(r) is a function that returns the set of states p such that from p, the players in A
can cooperate and enforce the next state to be in r.

The code from figure 2 represents the implementation of the � ATL operator which is
described in the symbolic model checking algorithm as:

176

�

�
Laura Florentina Stoica, Florin Stoica��

��

�

Function EvalA(�) as set of states � Q
 …
 case � =��A����:
 ��:=Q; := EvalA(�); 0:= ;
 while � � do
 � := ;
 :=Pre(A, �)� 0;
 wend
 return ��;
 …
endfunction

Fig. 3 The � ATL operator from the model checking algorithm

In figure 4 is represented the algebraic compiler implementation process, based on our
specification grammar of ATL language.

Fig. 4 Algebraic compiler implementation

For verification of formula � = <<A>> � (x
 y) we can use the ANTLR debugging
facility to visualize the Abstract Syntactic Tree (AST), presented in the figure 5.

Fig. 5: Abstract Syntactic Tree (AST)

177

�

�
Considerations about the implementation of an ATL model checker�

�

The AST is decorated with actions automatically executed when the parser recognizes
syntactic components of formula �. These actions implement the algebraic compiler C. The
output of C is presented in figure 6.

Given the ATL formula � = <<A>> � (x 	 y) for game structure from figure 1 with
A={2}, the output of the model checker is Q� = {1,3}. From state q1 if player 2 chooses the
move 2 the next state is q3 whatever is the move selected by the player 1. From the state q2 for
the move 1 of the player 2, the player 1 can choose the move 1. Thus the game remains in
state q2. For that reason the state 2!Q�.

Fig. 6: The output of compiler C for
ATL formula <<A>> � (x
 y)

Fig. 7: Output of the model checker for ATL
formula <<A>> � (x 	 y)

5 Conclusion
In this article we built a CTL model checking tool, based on robust technologies (Java,

ANTLR)
As a great facility we mention the capability of interactive debugging / visualization of

the execution of the symbolic model checking algorithm.
The ATL algebraic compiler based on Java code generated by ANTLR using an original

ATL grammar provides error-handling for eventual lexical/syntax errors in formula to be
translated.

References
[1] Laura F. Cacovean, Florin Stoica, Dana Simian, A New Model Checking Tool, Proceedings of the

European Computing Conference (ECC ’11), Paris, France, April 28-30, 2011, pp. 358-364, ISBN:
978-960-474-297-4, ISSN: 2222-7342

[2] L. Cacovean, F. Stoica, Algebraic Specification Implementation for CTL Model Checker Using ANTLR
Tools, 2008 WSEAS International Conferences, Computers and Simulation in Modern Science - Volume II,
Bucharest, Romania, 2008, pp. 45-50

178

�

�
Laura Florentina Stoica, Florin Stoica��

��

�

[3] M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge
University Press, 2000.

[4] L. F. Cacovean, Using CTL Model Checker for Verification of Domain Application Systems, Proceedings of
the 11th WSEAS International Conference on EC, Iai, Romania, 2010, pp. 262-267.

[5] R. Alur, T. A. Henzinger , O. Kupferman, Alternating-Time Temporal Logic, Journal of the ACM, Vol. 49,
No. 5, September 2002, pp. 672–713

LAURA FLORENTINA STOICA
Department of Computer Science
“Lucian Blaga” University of Sibiu
Str. Dr. Ion Ratiu 5-7, 550012, Sibiu
ROMANIA
E-mail: laura.cacovean@ulbsibiu.ro

FLORIN STOICA
Department of Computer Science
“Lucian Blaga” University of Sibiu
Str. Dr. Ion Ratiu 5-7, 550012, Sibiu
ROMANIA
E-mail: florin.stoica@ulbsibiu.ro

�

179

