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Abstract

We consider the problem of developing a learning from data scheme for the unknown input-output
dependency of a system S of linear type in the sense that the m-dimensional output of S results by
combining in a linear way the effects of n observable variables and the effects of several unobservable
latent variables. The effects of the latent variables on the output is treated as additive noise, that

is being given the observable vector x, the system computes the output y = βT

(
1
x

)
+ ε, where β is

a (n + 1) × m matrix and ε is a m-dimensional Gaussian variable. In the paper the mathematical
arguments for the estimation scheme based exclusively on a finite size set of observations is provided.
We present an experimental evaluation of the quality of the resulted learning scheme in order to
establish conclusions concerning their accuracy and generalization capacities, the evaluation being
performed in terms of metric, probabilistic and informational criterion functions.

1 Introduction

The tremendous growth in practical applications of machine learning over the past decade has been
accompanied by a wide variety of important developments in the underlying algorithms and techniques
that make use of concepts and results coming from several areas as mathematical statistics, computer
science and engineering.

Since the main aim of machine learning is to obtain computer programs that are able to extract
information from samples of data and as well as knowledge from the past experience and include them
in the process of solving problems of high complexity, the research methodology in the field of machine
learning is essentially based on a large class of concepts and results coming from mathematical statistics,
neural and evolutionary computation, brain models, adaptive control theory and so on.

The aim of the research was to develop a model free learning methodology in order to predict a system
behavior, conventionally denoted by S on the basis of finite size sequence of observations. In real life
applications, the input data sequence are either obtained in a controlled way, that is the observer knows
in advance the generating mechanism, or, in an uncontrolled way when the generating mechanism is
ignored by the observer. We denote by G (Generator) the component that supplies a series of samples
from an n-dimensional space loaded as inputs to us. The learning environment is assumed to be of
supervised type, that is the output of S is available to the observer. The goal is to develop a learning
component L on the basis of a finite size set of input-output observations, that is to infer the unknown
the input-output dependency of S and use it for further predictions. The general scheme of our model is
presented in Figure 1 ([3]).

The learning component L is responsible for a class of possible models for the unknown dependency
corresponding to S. In other words, the learning component L implements a class of hypothesis (models)
Ω, such that to each particular hypothesis ω ∈ Ω corresponds a function φω : X → Y defined on the space
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Figure 1: The learning environment.

of inputs X and taking values in the space of outputs Y. For each particular input x0, ŷ0 = ϕω (x0) is the
estimate of the S’s output corresponding to x0 in case of the model ω. Being given a criterion function
C that expresses numerically the fitness of each model with respect to the available evidence E, about S,
the best model ω0(E) is a solution of the optimization problem

arg (optimizeω∈Ω C(ω,E)) . (1)

In the case of supervised learning the available evidence E is represented by a finite set of pairs
{(xi, yi) , 1 ≤ i ≤ N} ⊂ X × Y , where each yi is the actual output of S for the input xi. If we as-
sume that the unknown dependency is of deterministic type, that is the inputs and the outputs of S are
functionally related a reasonable choice of the criterion function C is the arithmetic mean of the square
errors, that is for each ω ∈ Ω,

C(ω,E) =
1

N

N∑
i=1

‖yi − ϕω (xi)‖2 . (2)

The optimization problem (1) becomes

arg

(
min
ω∈Ω
C(ω,E)

)
, (3)

and its solutions are called the Minimum Square Errors (MSE) models computed on the basis of
{(xi, yi) , 1 ≤ i ≤ N} ([14]).

A more realistic approach is to accept that besides the inputs, the outputs of S are also influenced
by a series of unknown number of unobservable factors referred as latent variables. In this case the
cumulated effects of the latent variables can by only modelled in probabilistic terms, assuming some
class of multivariate probability distributions, each hypothesis corresponding to a certain input-output
dependency combined with a probabilistic model for the latent vector. For simplicity sake, we consider
that the latent vector is a continuous random vector, that is to each hypothesis ω ∈ Ω corresponds a
conditional density function f(·|· ; ω) ([9], [11]). Put in other words, for each ω ∈ Ω, x ∈ X , y ∈ Y ,
f(y|x ; ω) expresses ’the chance’ of getting the output y for the input x in case of the model ω. If the
available evidence about S is {(xi, yi) , 1 ≤ i ≤ N} then a reasonable choice of C(ω,E) is the likelihood
function. If we assume that the inputs x1, . . . , xN are independently generated by G then

C(ω,E) =

N∏
i=1

f (yi|xi ; ω) , (4)

and the optimization problem (1) becomes

arg

(
max
ω∈Ω

C(ω,E)

)
. (5)

The solutions of (5) are the MLE (Maximum Likelihood Estimation) models computed on the basis of
{(xi, yi) , 1 ≤ i ≤ N}.

161



�

�
Supervised Approach to Learning Multivariate Linear Systems  

�

�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 A MLE-based approach in learning multivariate linear
systems

In our work we assume that the inputs come from a n-dimensional real space and for each input x the
output y of S is a tuple of m real variables. It is also assumed that the output dependency on the input is
of linear type, that is the influence of the input is given by βTx where β is an unknown (n+1)×m matrix.
The effects of the latent variables can by taken as noise additively superimposed on the influence of the

inputs, that is the output of S is y = βT

(
1
x

)
+ ε where ε is a m-dimensional Gaussian distributed

random vector, ε ∼ N (μ,Σ). The parameters μ ∈ IRm and Σ ∈Mm(IR), symmetric positive definite
matrix, are unknown. Therefore, the dimension of the space of hypotheses Ω is m(m + n + 2), and for
each particular tuple of m(m + n + 2) parameters, ω = (β, μ,Σ) defines a model of S. We denote by
f (y|x ; ω) the conditional density function on the output space corresponding to the model ω.

Several intuitively justified criterion functions can be considered in order to quantitatively express
the quality of each possible model with respect to available sequence of observations. For each crite-
rion function, the identification of the ”fittest” model reduces to solving an constrained/unconstrained
optimization problem ([6]).

Let SN = {(xi, yi) , 1 ≤ i ≤ N} be the sequence of input-output observations taken on S. Being given
the model ω = (β, μ,Σ), the estimate ỹ of the actual output of S being given the input x is a random
vector of density function

f (ỹ|x, ω)= 1√
(2π)

m |Σ|
exp

{
−1

2

(
ỹ − βT z − μ

)T
Σ−1

(
ỹ − βT z − μ

)}
,

where z =

(
1
x

)
.

Consequently, the log-likelihood function is

l (β, μ,Σ,SN ) = −mN

2
ln(2π)− N

2
ln |Σ| − 1

2

N∑
i=1

(
(yi − μ)

T − zTi β
)
Σ−1

(
(yi − μ)− βT zi

)
,

and the best model from the point of view of maximum likelihood principle is a solution of the constrained
optimization problem ⎧⎪⎨

⎪⎩
min
β,μ,Σ

(Φ(β, μ,Σ))

Σ ∈Mm(IR) symmetric and positive defined,

where

Φ(β, μ,Σ) = N ln |Σ|+
N∑
i=1

(
(yi − μ)

T − zTi β
)
Σ−1

(
(yi − μ)− βT zi

)
.

Let us denote

Y = (y1, . . . , yN ) ∈Mm×N (IR), Z = (z1, . . . , zN ) ∈M(n+1)×N (IR),

u = (1, . . . , 1)T ∈ IRN , A = IN −
1

N
uuT .

(6)

For any matrix B, we denote by B+ the generalized inverse (Penrose pseudo-inverse) of B.

Theorem 1 The objective function Φ(β, μ,Σ) has an unique critical point (β0, μ0,Σ0) where

β0 =
(
Y (ZA)

+
)T

, μ0 =
1

N

(
Y u− Y (ZA)

+
Zu

)
, Σ0 =

1

N
Y

(
A− (ZA)

+
(ZA)

)
Y T , (7)

and Σ0 is a symmetric and positive semi-defined matrix.
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Proof. The generalized gradients of Φ(β, μ,Σ) with respect to β, μ, and Σ respectively, are

⎧⎪⎨
⎪⎩
∇β Φ(β, μ,Σ) = −

(
ZY T − ZuμT − ZZTβ

)
Σ−1,

∇μ Φ(β, μ,Σ) = −Σ−1
(
Y u−Nμ− βTZu

)
,

∇Σ Φ(β, μ,Σ) = Σ−1DΣ−1 − 1

2
diag

(
Σ−1DΣ−1

)
,

where

D = NΣ− Y Y T +
(
μ (Y u)

T
+ (Y u)μT

)
+

((
ZY T

)T
β + βTZY T

)
−N

(
μμT

)
−(

μ (Zu)
T
β + βT (Zu)μT

)
− βTZZTβ .

From the system {
∇μ Φ(β, μ,Σ) = 0m,
∇β Φ(β, μ,Σ) = On+1,m,

since |Σ| �= 0, we get {
Y u−Nμ− βTZu = 0m

ZY T − ZuμT − ZZTβ = On+1,m ,

that is

β =
(
Y (ZA)

+
)T

= β0 , μ =
1

N

(
Y u− Y (ZA)

+
Zu

)
= μ0 .

Replacing μ0, β0 in the system

∇Σ Φ(β, μ,Σ) = Om

we obtain

Σ−1DΣ−1 − 1

2
diag

(
Σ−1DΣ−1

)
= Om,

where diag
(
Σ−1DΣ−1

)
∈Mm(R) is the diagonal matrix that retains only the entries placed on the main

diagonal of Σ−1DΣ−1. Since Σ is a positive definite matrix, we get D = Om and consequently,

Σ =
1

N

(
Y Y T + βT

0 ZZTβ0 − Y ZTβ0 − βT
0 ZY T+

1

N

(
βT
0 ZuuTY T − βT

0 ZuuTZTβ0 + Y uuTZTβ0 − Y uuTY T
))

=

1

N

(
Y AY T + βT

0 ZAZTβ0 − Y AZTβ0 − βT
0 ZAY T

)
.

Using the well-known properties of the Penrose pseudo-inverse, the expression of Σ becomes

Σ =
1

N

(
Y AY T + Y (ZA)

+
(ZA)AZT

(
Y (ZA)

+
)T

− Y AZT
(
Y (ZA)

+
)T

− Y (ZA)
+
ZAY T

)
=

1

N

(
Y AY T+Y

(
(ZA)

+
(ZA)

)T

(ZA)
T
(
(ZA)

+
)T

Y T −Y
(
(ZA)

+
(ZA)

)T

Y T−Y (ZA)
+
(ZA)Y T

)
=

1

N
Y

(
A+

(
(ZA)

+
(ZA) (ZA)

+
(ZA)

)T

− (ZA)
+
(ZA)− (ZA)

+
(ZA)

)
Y T =

1

N
Y

(
A− (ZA)

+
(ZA)

)
Y T not

= Σ0 .

A further simplification can be obtained by noting that B = A− (ZA)
+
ZA is a symmetric matrix and

B2 = B. Which finally yields to

Σ0 =
1

N
Y BBTY T .

Obviously, the estimate Σ0 is a symmetric and positive semi-defined matrix. �
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Theorem 2 Let β0 and μ0 be given by Theorem 1. Then for any (β, μ,Σ) in the parameter space,

l (β, μ,Σ,SN ) ≤ l (β0, μ0,Σ,SN ) . (8)

Proof. Using (6) and vT v = tr
(
vvT

)
the expression of the log-likelihood function can be written as

l (β, μ,Σ,SN ) = −mN

2
ln(2π)− N

2
ln |Σ| − 1

2
tr

(
Σ−1

(
Y − μuT − βTZ

) (
Y − μuT − βTZ

)T)
.

Therefore

l (β0, μ0,Σ,SN ) = −mN

2
ln(2π)− N

2
ln |Σ| − 1

2
tr

(
Σ−1Y

(
A− (ZA)

+
ZA

)(
A− (ZA)

+
ZA

)T

Y T

)
.

Using the relations A = A2 = AT we get(
A− (ZA)

+
ZA

)(
A− (ZA)

+
ZA

)T

=

A2 −A (ZA)
+
(ZA)− (ZA)

+
(ZA)A+ (ZA)

+
(ZA) (ZA)

+
(ZA) =

A−A (ZA)
+
(ZA)− (ZA)

+
(ZA) + (ZA)

+
(ZA) = A−A (ZA)

+
(ZA) .

therefore the term Y − μuT − βTZ becomes

Y − μuT − βTZ = Y
(
A−(ZA)

+
(ZA)

)
+

1

N

(
Y u−Y (ZA)

+
Zu−Nμ

)
uT +

(
Y (ZA)

+−βT
)
Z =

Y
(
A−(ZA)

+
(ZA)

)
+(μ0 − μ)uT +(β0−β)T Z.

Consequently,

l (β, μ,Σ,SN ) = −mN

2
ln(2π)−N

2
ln |Σ| − 1

2
tr

(
Σ−1Y

(
A−(ZA)

+
ZA

)(
A−(ZA)

+
ZA

)T

Y T

)
−

tr
(
Σ−1Y

(
A−(ZA)

+
ZA

)(
(μ0−μ)uT

)T)−tr(Σ−1Y
(
A−(ZA)

+
ZA

)(
(β0−β)TZ

)T
)
−

1

2
tr

(
Σ−1 (μ0−μ)uTu (μ0−μ)T

)
− 1

2
tr

(
Σ−1 (β0−β)T ZZT (β0−β)

)
=

l (β0, μ0,Σ,SN )− 1

2
tr

(
Σ−1 (μ0−μ)uTu (μ0−μ)T

)
− 1

2
tr

((
Σ−1β0−β

)T
ZZT (β0−β)

)
−

tr
(
Σ−1Y

(
IN − (ZA)

+
Z
)
Au (μ0 − μ)

T
)
− tr

(
Σ−1Y

(
IN − (ZA)

+
Z
)
AZT (β0−β)

)
.

(9)

Since

Au =

(
IN −

1

N
uuT

)
u = u− 1

N
u
(
uTu

)
= 0N

we get

Y
(
IN − (ZA)

+
Z
)
Au (μ0 − μ)

T
= Om.

Also, using the properties of the Penrose pseudo-inverse, we get(
IN − (ZA)

+
Z
)
AZT =(ZA)

T−(ZA)
+
ZAATZT =(ZA)

T−
(
(ZA)

+
(ZA)

)T

(ZA)
T
=

(ZA)
T −

(
(ZA) (ZA)

+
(ZA)

)T

= (ZA)
T − (ZA)

T
= ON,n+1 ,

that is Y
(
IN − (ZA)

+
Z
)
AZT (β0−β) = Om.

Taking into account these arguments we finally obtain,

l (β, μ,Σ,SN ) = l (β0, μ0,Σ,SN )− 1

2
tr

(
Σ−1(μ0−μ)uTu (μ0−μ)T

)
− 1

2
tr

(
Σ−1(β0−β)TZZT (β0−β)

)
.
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Obviously, since Σ a positive definite matrix,

tr
(
Σ−1 (μ0−μ)uTu (μ0−μ)T

)
= N tr

(
(μ0−μ)T Σ−1 (μ0−μ)

)
= N (μ0−μ)T Σ−1 (μ0−μ) ≥ 0

and

tr
(
Σ−1 (β0−β)T ZZT (β0−β)

)
=tr

(
ZT (β0−β) Σ−1(β0−β)TZ

)
=tr

((
(β0−β)TZ

)T

Σ−1(β0−β)TZ
)
≥0

that is
l (β, μ,Σ,SN ) ≤ l (β0, μ0,Σ,SN ) . �

Remark. Although, a long series of tests pointed out that the estimate Σ0 given by Theorem 1 is
a positive matrix the mathematical proof is still an open problem. Also, it is not known whether the
unique critical point (β0, μ0,Σ0) corresponds to the best model in the sense of the maximum likelihood
principle.

An adaptive learning procedure can be obtained using the gradient ascent method applied to the
log-likelihood criterion function. The search developed by the adaptive procedure in a m(m + n + 2)-
dimensional space aims to adjust the model parameters β, μ, Σ in order to maximize the log-likelihood
function or, equivalently, to minimize Φ(β, μ,Σ). The procedure should be implemented using a control
parameter δ > 0 and a stopping condition C(δ) usually expressed in terms of the magnitude of the
displacement in the parameter space due to the current iteration. In our tests C(δ) = true if

‖βnew − βold‖ < δ , ‖μnew − μold‖ < δ , ‖Σnew − Σold‖ < δ

where ‖ · ‖ is a conventionally norm, for instance Euclidian norm.
Also, the implementation of the procedure can be done using either a constant learning rate ρ > 0 or

a decreasing sequence of positive learning rates (ρk) that refines the search while the search advances.
Since during the search process the estimates of Σ are not guaranteed to be invertible, the implemen-

tation procedure MLE gradient ascent uses approximations of the actual generalized gradients where
the generalized inverse is used instead.

procedure MLE gradient ascent

Input: {(x1, y1), . . . , (xN , yN )}
Initializations: δ > 0, ρ > 0, β̃, μ̃, Σ̃,

Z =

(
1
x1

, . . . ,
1
xN

)
, Y = (y1, . . . , yN ), u = (1, . . . , 1)

T

βold ← β̃ , μold ← μ̃ , Σold ← Σ̃
Compute S = ZZT , Q = ZY T , P = Y Y T

Z1 = Zu, Y1 = Y u
repeat

Σ1 ←
(
Σold

)+
βnew ← βold + ρ

(
Q− Z1

(
μold

)T − Sβold
)
Σ1

μnew ← μold + ρΣ1

(
Y1 −

(
βold

)T
Z1 −Nμold

)
D=NΣold−P+Y1

(
μold

)T
+

(
Y1

(
μold

)T)T

+QTβold +
(
QTβold

)T −
Nμold

(
μold

)T−μold(Z1)
T
βold−

(
μold(Z1)

T
βold

)T

−
(
βold

)T
Sβold

Σnew ← Σold+ρ

(
−Σ1DΣ1+

1

2
diag (Σ1DΣ1)

)
evaluate C(δ)
βold ← βnew, μold ← μnew, Σold ← Σnew

until C(δ)
Output: βnew , μnew ,Σnew.
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3 Experimental analysis

Because the model (β0, μ0,Σ0) given by (7) is not theoretical guaranteed as the best model from the
point of view of maximum likelihood principle, we have performed a long series of tests aiming to derive
conclusions concerning the performance of the proposed method on experimental way. The test examples
xi’s were random generated from n-dimensional Gaussian repartition N (μ1,Σ1). The target responses

yi’s were computed as yi = β̃Txi + ε for given β and ε randomly generated from known Gaussian

repartition N
(
μ̃, Σ̃

)
.

According to the previous arguments the expression of conditional density function on the output
space corresponding to each example xi being given the model ω = (β, μ,Σ) is

f (y|xi, ω)=
1√

(2π)
m |Σ|

exp

{
−1

2

(
y − βT zi − μ

)T
Σ−1

(
y − βT zi − μ

)}
,

where zi =

(
1
xi

)
, therefore the most likely output predicted value is y′i = βT zi + μ .

In order to evaluate the quality of the resulted model we considered three indicators to evaluate the
overall error.

The first indicator evaluates the overall mean error of miss-prediction for the given set of example
{(xi, yi) | 1 ≤ i ≤ N} corresponding to each possible model ω

error 1 =
1

N

N∑
i=1

(1− f (yi|xi, ω)) . (10)

The second indicator is a mean error computed in terms of the actual responses and the most likely
predicted values,

error 2 =
1

N

N∑
i=1

‖yi − y′i‖2 =
1

N

N∑
i=1

‖yi − βT zi − μ‖2 . (11)

The third measure, of informational type, aims to evaluate the informational correlation between the
input and the computed output corresponding to each model, and it is expressed in terms of the empirical
mutual information. Since x1, . . . , xN are randomly generated N (μ1,Σ1), the probability distribution
p̃ = (p̃ (x1) , . . . , p̃ (xN )) characterizes the collection of examples,

p̃ (xj) =
p (xj)

N∑
i=1

p (xi)

,

where p (xj) =
1√

(2π)
n |Σ1|

exp

{
−1

2
(xj − μ1)

T
Σ−1

1 (xj − μ1)

}
, 1 ≤ j ≤ N .

The empirical entropy of the input samples x1, . . . , xN is given by the Shannon entropy corresponding
to p̃,

H (p̃) = −
N∑
i=1

p̃ (xi) ln p̃ (xi) . (12)

Using the transition probabilities

p̃ (yj |xi, ω) =
f (yj |xi, ω)

N∑
k=1

f (yk|xi, ω)

, 1 ≤ i, j ≤ N ,

we define the probability distribution q̃ = (q̃ (y1) , . . . , q̃ (yN )) on the set of target responses by

q̃ (yj) =

N∑
i=1

p̃ (xi) p̃ (yj |xi, ω) , 1 ≤ j ≤ N , and let

H (q̃) = −
N∑
i=1

q̃ (yi) ln q̃ (yi) , (13)
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be the empirical Shannon entropy of the set of S’s outputs.
Using the well-known expression of the mutual information ([4]), the empirical mutual information

can be defined as

I (SN ) = H (q̃)−
N∑
i=1

N∑
j=1

p̃ (xi) p̃ (yj |xi, ω) ln p̃ (yj |xi, ω) . (14)

We evaluated the performance of the model ω0 = (β0, μ0,Σ0) given by (7) for different sizes for
learning samples SN .

Test 1. The settings are n = 2, m = 1, μ1 =

(
1
2

)
, Σ1 =

(
1 0
0 1

)
, β̃ =

⎛
⎝ 0

2
4

⎞
⎠, μ̃ = 0.25 and

Σ̃ = 1. Some of the results for data of different sizes N , corresponding to the quasi-optimal model ω0

computed for each data set are summarized in Table 1a.

Table 1: Model evaluation in case n = 2, m = 1 and for different volumes of: a) learning data; b) test samples.

a b

N error 1 error 2 H (p̃) H (q̃) I (SN )

10 0.603 0.533 2.214 2.205 1.335

20 0.702 0.802 2.767 2.796 1.304

50 0.711 0.892 3.768 3.831 1.226

100 0.712 0.950 4.477 4.524 1.233

200 0.716 0.959 5.098 5.188 1.221

300 0.721 1.019 5.510 5.590 1.106

400 0.713 0.953 5.822 5.897 1.155

500 0.725 1.025 6.023 6.113 1.150

Ntest error 1 error 2 H (p̃) H (q̃) I (SN )

15 0.706 1.149 2.458 2.582 1.346

30 0.710 1.257 3.243 3.276 1.367

50 0.683 1.039 3.752 3.829 1.573

70 0.650 1.136 4.146 4.172 1.573

90 0.707 1.292 4.309 4.400 1.637

100 0.709 1.276 4.376 4.483 1.662

200 0.715 1.361 5.124 5.235 1.616

300 0.719 1.375 5.547 5.633 1.579

Several tests aimed to establish conclusions concerning the generalization capacity of the quasi-optimal
model. For instance, in case of a training sequence of volume N = 100, the computed quasi-optimal model
is ω0 = (β0, μ0,Σ0) is

β0 =

⎛
⎝ 0.000

2.614
4.077

⎞
⎠ μ0 = −0.218 , Σ0 = 0.457 ,

the results are summarized in table 1b and the variations of the input, output empirical entropies and
the empirical mutual information as functions of the test sample sizes are depicted in Figure 2b.

Test 2. The settings are n = 2, m = 2, μ1 =

(
1
2

)
, Σ1 =

(
1 0
0 1

)
, β̃ =

⎛
⎝ 0 0

2 1
4 5

⎞
⎠, μ̃ =

(
0.25
0.25

)

and Σ̃ =

(
1 0
0 1

)
. Some of the results for data of different sizes N , corresponding to the quasi-optimal

model ω0 computed for each data set are summarized in Table 2a.
Several tests aimed to establish conclusions concerning the generalization capacity of the quasi-optimal

model. For instance, in case of a training sequence of volume N = 100, the computed quasi-optimal model
is ω0 = (β0, μ0,Σ0) is

β0 =

⎛
⎝ −0.000 −0.000

1.872 1.012
4.134 5.047

⎞
⎠ μ0 =

(
0.274
0.104

)
, Σ0 =

(
0.677 −0.007
−0.007 0.899

)
,

the results are summarized in table 2b and the variations of the input, output empirical entropies and
the empirical mutual information as functions of the test sample sizes are depicted in Figure 3b.

167



�

�
Supervised Approach to Learning Multivariate Linear Systems  

�

�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 100 200 300 400 500
0

1

2

3

4

5

6

7

N

Em
pi

ri
ca

l e
nt

ro
pi

es
 a

nd
 e

m
pi

ri
ca

l r
el

at
iv

e 
in

fo
rm

at
io

n

H(p)
H(q)
I(SN )

a
0 50 100 150 200 250 300

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Ntest

Em
pi

ri
ca

l e
nt

ro
pi

es
 a

nd
 e

m
pi

ri
ca

l r
el

at
iv

e 
in

fo
rm

at
io

n

H(p)
H(q)
I(SN )

b

Figure 2: The variation of the empirical input/output entropies and empirical mutual information: a) as function
of N , volume of learning data; b) for N = 100 and different volumes of test samples.

Table 2: Model evaluation in case n = 2, m = 2 and for different volumes of: a) learning data; b) test samples.

a b

N error 1 error 2 H (p̃) H (q̃) I (SN )

15 0.887 1.436 2.500 2.483 1.610

20 0.877 1.282 2.816 2.720 1.521

50 0.892 1.473 3.748 3.675 1.810

100 0.926 2.030 4.441 4.369 1.583

200 0.908 1.774 5.090 5.065 1.704

300 0.923 2.072 5.513 5.495 1.638

400 0.919 1.982 5.810 5.768 1.661

500 0.918 1.954 6.014 5.987 1.763

Ntest error 1 error 2 H (p̃) H (q̃) I (SN )

15 0.917 2.154 2.542 2.311 1.277

30 0.912 1.874 3.190 3.116 1.763

50 0.890 1.438 3.764 3.699 1.627

70 0.910 2.216 4.042 3.889 1.772

90 0.907 1.881 4.349 4.277 1.769

100 0.912 2.014 4.432 4.292 1.783

200 0.906 1.938 5.098 5.062 1.698

300 0.902 1.860 5.512 5.457 1.822

4 Conclusions
The aim of the report research was to develop a model free learning methodology in order to predict
a system behavior, conventionally denoted by S on the basis of finite size sequence of observations.
The learning environment is assumed to be of supervised type, that is a finite size sample of pairs of
input-output values is available to the observer. The goal was to develop a learning component on the
basis on the input-output sample, that is to infer the unknown the input-output dependency of S and
use it for further predictions. In Section 2, the input-output dependency of S is modeled in terms of a
Gaussian repartition of the output space. The model parameters are adjusted on the basis of the available
sequence of observations using the Maximum Likelihood Principle. We managed to compute explicitly
the quasi-optimal model ω0 (Theorem 1) and establish its ’almost’ optimality (Theorem 2).

The performance evaluation of the quasi-optimal model is evaluated in Section 3 aiming to establish
conclusions concerning the quality of the predictions about S computed by the learning component. The
performance is evaluated in terms of three indicators, on the basis of the available sequence of observations
and new test samples. The tests confirm that the proposed methodology assures fast learning of good
quality, the predicted values being ’close’ to the actual values in case of learning samples as well as in
case of new test data. A series of further developments, still in progress, aiming to extend and refine the
proposed methodology by taking into account non-linear models are going to be published in the near
future.

Acknowledgement: The paper reports a series of results of the research performed in the framework
of the Doctoral School in Computer Science at the University of Piteşti, Romania.
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Figure 3: The variation of the empirical input/output entropies and empirical mutual information: a) as function
of N , volume of learning data; b) for N = 100 and different volumes of test samples.
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