
Second International Conference

Modelling and Development of Intelligent Systems

Sibiu - Romania, September 29 - October 02, 2011

Playing with threads in Java 7

Ernest Scheiber

Abstract

The new Java 7 version introduce the fork-join technique and the class Phaser. These tech-
niques are compared with other tools introduced in earlier Java versions (join, CountDownLatch,

CyclicBarrier, ExecutorService) in terms of the time to solve a simple embarrassing parallel test
problem based on a synchronous algorithm for the successive approximation method.

In the same way a comparison is made between Java 6 and Java 7.

1 Introduction

The new Java 7 version introduce the fork-join technique that will allow recurrence definitions in parallel-
concurrent programs as well as an implicit support for multi-core processors. There are some good
tutorials for this Java technique [4],[3]. In [3] there is stated that, for the fork-join technique, the
algorithmic speed increase linearly relative to the number of cores.

The class Phaser offers a flexible barrier synchronization technique based on phases associated to
registered parties, i.e. threads.

We are interested to compare

• fork-join technique with Phaser and other tools introduced in earlier versions of Java (join,
CountDownLatch, CyclicBarrier, ExecutorService) and

• the behavior of these tools between Java 6 and Java 7

in terms of the time to solve a simple embarrassing parallel test problem based on a synchronous algorithm
for the successive approximation method.

2 A test problem

The Jacobi method to solve a linear system Ax = b, A = (ai,j)1≤i,j≤n ∈ Mn(R), b = (bi)1≤i≤n ∈ R
n

is well known, [1]. For parallel computing, it is known a block version, too, [2]. We shall use the most
simple version, with the iterations given by

uk+1
i =

1

ai,i
(bi −

n∑
j=1

j �=i

ai,ju
k
j), i ∈ {1, . . . , n}, k ∈ N.

There are known several convergence theorems. Our test data will satisfy the conditions of a convergence
theorem. Starting with an arbitrary vector u0 ∈ R

n, the stopping rule will be

‖uk+1 − uk‖∞ < ε or k > kmax, (1)

146

�

�
Ernest Scheiber

��

��

�

where ε is a given tolerance to be satisfied in given fixed number of iterations kmax.
Each uk+1

i component will be computed within a thread. There is a synchronization problem: before
starting a new iteration, all launched threads must finish their activities and the stopping test must be
applied.

Our test data are defined in the class

1 public c lass Data{
2 public double a [] []={{4 , 1 , 1} ,{1 , 4 , 1} ,{1 , 1 , 4}} ;
3 public double b []={9 ,12 ,15} ;
4 public int n=a . l ength ;
5 public double x []=new double [n] ;
6 public double eps=1.0e−5; // t o l l e r ance
7 public int nmi=50; // maximum permiss i b l e number of i t e r a t i on s
8 public int e r r o r ; // error code
9 public double y []=new double [n] ; // the so lu t i on

10 }

3 Java parallel-concurrent programming templates

The threads act in a pool. The most simple case considers the threads as elements of an array, collec-
tion, etc. Java 5 introduces specialized pools that implements the interface java.util.concurrent.

ExecutorService. Also there is introduced the class java.util.concurrent.CyclicBarrier to syn-
chronize the threads that have arrived at a specific point of their activities. The fork-join technique uses
a specialized pool, java.util.concurrent.ForkJoinPool.

We have developed 6 classes to solve the linear system as it was described in the previous section:

1. The threads will be elements of an array and the required synchronization is obtain using the join
method of the class Thread.
The computation required by (1) is perform by the thread

1 class JacobiThread1 extends Thread{
2 int myindex ;

4 public JacobiThread1 (int myindex){
5 this . myindex=myindex ;
6 }

8 public void run (){
9 double suma=0;

10 for (int i =0; i<d . n ; i++)
11 i f (i !=myindex)
12 suma+=d . a [myindex] [i]∗d . x [i] ;
13 d . y [myindex]=(d . b [myindex]−suma)/d . a [myindex] [myindex] ;
14 }
15 }

The instantiation of the threads, their starting and the synchronization is done by the method

1 void s o l v e (){
2 int ni =0;
3 double nrm ;
4 JacobiThread1 t []=new JacobiThread1 [d . n] ;
5 do{
6 ni++; // A new i t e r a t i on
7 for (int i =0; i<d . n ; i++){ // For any equation
8 t [i]=new JacobiThread1 (i) ; // a new thread i s in s t an t i a t ed
9 t [i] . s t a r t () ; // and i s launched to work

10 }
11 try{ // Synchronization
12 for (int i =0; i<d . n ; i++) t [i] . j o i n () ; // on the condit ion tha t the threads
13 } // are terminated
14 catch (Inter ruptedExcept ion e){}
15 nrm=0;
16 for (int i =0; i<d . n ; i++){ // Stopping ru l e
17 i f (nrm<Math . abs (d . x [i]−d . y [i]))
18 nrm=Math . abs (d . x [i]−d . y [i]) ;
19 d . x [i]=d . y [i] ;
20 }
21 }

2

147

�

�
Playing with threads in Java 7

�

�

22 while ((nrm>=d . eps)&&(ni<d . nmi)) ;
23 i f (nrm<d . eps)
24 d . e r r o r =0;
25 else
26 d . e r r o r =1;
27 }

At each iteration there are created and started a new set of threads corresponding to the components
of the new approximation to be computed.

2. Using the same thread code, the usage of the java.util.concurrent.Phaser class is based on a
template presented in the docs/api of the Java 7 release. In this case the code of the solve method
is

1 void s o l v e (){
2 List<Runnable> ta sk s=new ArrayList<Runnable>(d . n) ;
3 for (int i =0; i<d . n ; i++)
4 ta sk s . add (new JacobiThread1 (i)) ;
5 runTasks (ta sk s) ;
6 }

where the code based on the template is

1 stat ic void runTasks (List<Runnable> ta sk s) {
2 int ni =0;
3 double nrm ;
4 f ina l Phaser phaser = new Phaser (1) ; //”1” to r e g i s t e r s e l f
5 do{
6 ni++;
7 for (f ina l Runnable task : ta sk s) {
8 phaser . r e g i s t e r () ;
9 new Thread () {

10 public void run () {
11 task . run () ;
12 phaser . arriveAndAwaitAdvance () ;
13 }
14 } . s t a r t () ;
15 }
16 try{Thread . s l e e p (5) ;} catch (Inter ruptedExcept ion e){}
17 nrm=0;
18 for (int i =0; i<d . n ; i++){
19 i f (nrm<Math . abs (d . x [i]−d . y [i])) nrm=Math . abs (d . x [i]−d . y [i]) ;
20 d . x [i]=d . y [i] ;
21 }
22 i f (nrm<d . eps)
23 d . e r r o r =0;
24 else
25 d . e r r o r =1;
26 }
27 while ((nrm>=d . eps)&&(ni<d . nmi)) ;
28 phaser . a r r iveAndDereg i s t e r () ;
29 }

3. Very close to the previous template is as follows. The class java.util.concurrent.

CountDownLatch introduced in Java 5 is used for synchronization. The code of the thread re-
produced above has an additional line code (after the line 13)

countDownLatch.countDown();

In the solver method, at the beginning of each iteration it is instantiated an instance of the class
CountDownLatch

countDownLatch=new CountDownLatch(d.n);

and the lines relating to the join method are replaced by

try{

countDownLatch.await();

} catch (InterruptedException e){}

3

148

�

�
Ernest Scheiber

��

��

�

4. The synchronization will be done through a CyclicBarrier object. In this case the following thread
is used to compute the attached component to each iterations:

1 class JacobiThread3 extends Thread{
2 int myIndex ;

4 JacobiThread3 (int index){
5 myIndex=index ;
6 }

8 public void run (){
9 double s ;

10 while (! s f a r s i t){
11 ni++;
12 s=0;
13 for (int i =0; i<d . n ; i++){
14 i f (i !=myIndex){
15 s+=d . a [myIndex] [i]∗d . x [i] ;
16 }
17 }
18 d . y [myIndex]=(d . b [myIndex]− s)/d . a [myIndex] [myIndex] ;
19 try{
20 ba r r i e r . await () ;
21 }
22 catch (Exception e){}
23 }
24 }
25 }

The solver method is

1 public void s o l v e (){
2 StoppingRule t e s t=new StoppingRule () ;
3 ba r r i e r=new Cyc l i cBa r r i e r (d . n , t e s t) ;
4 for (int i =0; i<d . n ; i++)
5 (new JacobiThread3 (i)) . s t a r t () ;
6 while (! s f a r s i t) ;
7 }

As the name, the StoppingRule class is a thread required by the CyclicBarrier class containing
the stopping rule:

1 class StoppingRule extends Thread{
2 public void run (){
3 double nrm=0, d i f ;
4 for (int i =0; i<d . n ; i++){
5 d i f=Math . abs (d . y [i]−d . x [i]) ;
6 i f (d i f>nrm) nrm=d i f ;
7 d . x [i]=d . y [i] ;
8 }
9 i f ((nrm<d . eps) | | (n i /d . n>d . nmi))

10 s f a r s i t=true ;
11 i f (nrm<d . eps)
12 d . e r r o r =0;
13 else
14 d . e r r o r =1;
15 }
16 }

5. Instead of the array containing the threads, a specialized thread pool is used. The pool implements
the interface java.util.concurrent.ExecutorService. In this case the code of the solver method
is

1 public void s o l v e (){
2 StoppingRule t e s t=new StoppingRule () ;
3 ba r r i e r=new Cyc l i cBa r r i e r (d . n , t e s t) ;
4 ExecutorServ i ce executor=Executors . newFixedThreadPool (d . n) ;
5 for (int i =0; i<d . n ; i++){
6 Runnable ac t i on=new JacobiThread2 (i) ;
7 executor . execute (ac t i on) ;
8 }
9 try{

10 executor . shutdown () ;
11 while (! executor . i sTerminated ()) ;
12 }
13 catch (Exception e){}
14 }

4

149

�

�
Playing with threads in Java 7

�

�

6. Finally, we use the fork-join technique. The threads pool is an instance of the class
java.util.concurrent.ForkJoinPool. Instead of pure thread objects there are using de-
scendants of the class java.util.concurrent.ForkJoinTask, especially RecursiveAction or
RecursiveTask.

Because we do not have a recurrence formula, a trick is used. A fake RecurentAction class is
introduced:

1 stat ic c lass JacobiTask extends Recurs iveAct ion {
2 private int index ;

4 JacobiTask (int index){
5 this . index=index ;
6 }

8 @Override
9 protected void compute (){

10 i f (index==−1){
11 for (int i =0; i<d . n ; i++){
12 JacobiTask ac t i on=new JacobiTask (i) ;
13 ac t i on . f o rk () ;
14 }
15 }
16 else {
17 double s=0;
18 for (int i =0; i<d . n ; i++){
19 i f (i != index){
20 s+=d . a [index] [i]∗d . x [i] ;
21 }
22 }
23 d . y [index]=(d . b [index]− s)/d . a [index] [index] ;
24 }
25 }
26 }

The invocation of the object JacobiTask(-1) is used to spawn recursively the needed tasks and to
launch them asynchronously. The solver method is

1 public void s o l v e (){
2 int p ro c e s s o r s=Runtime . getRuntime () . a v a i l a b l eP r o c e s s o r s () ;
3 ForkJoinPool pool=new ForkJoinPool (p r o c e s s o r s) ;

5 int ni =0;
6 JacobiTask task=null ;
7 double nrm , d i f ;
8 do{
9 ni++;

10 task=new JacobiTask (−1);
11 pool . invoke (task) ;
12 while (pool . i sTerminated ()) ;
13 nrm=0;
14 for (int i =0; i<d . n ; i++){
15 d i f=Math . abs (d . y [i]−d . x [i]) ;
16 i f (d i f>nrm) nrm=d i f ;
17 d . x [i]=d . y [i] ;
18 }
19 i f (nrm<d . eps)
20 d . e r r o r =0;
21 else
22 d . e r r o r =1;
23 }
24 while (nrm>=d . eps && ni<=d . nmi) ;
25 }

4 Results and conclusions
Each example is solved several times with the same data. For each run the beginning and ending time
are obtained and hence the duration of the computation. Finally the average time is computed:

long averageTime=0,duration,beginTime,endTime;

for(int i=0;i<testsNumber;i++){

beginTime=System.currentTimeMillis();

// Instantiates the main class

// Calls the method to solve the problem

5

150

�

�
Ernest Scheiber

��

��

�

endTime=System.currentTimeMillis();

duration=endTime-beginTime;

averageTime+=duration;

}

duration/=testNumber;

In our experiences we have testsNumber = 100. The obtained computation time is only indicative because
the time can’t be measured with the same computer used to do the computation.

Instead of calling the currentTimeMillis method, the usage of the perf4j framework offers a more
elaborate approach, but we will to keep the code as simple as possible.

On a 64 bit PC with an Intel CORE2 Duo CPU and Windows 7 Home Premium OS, we have run
the classes using Java 6 and Java 7. The results of our computing experiences are given in the table

Java Time(ms)/Example
distribution 1 2 3 4 5 6

jdk-6u27-windows-x64 16.70 — 21.37 62.71 5.78 —
jdk-7-windows-x64 7.62 102.92 7.98 0.99 1.1 0.81

Of course the class based on the Phaser class (example 2) and the fork-join technique (example=6)
can’t be run using Java 6. Our conclusion is that the best results are obtained using the ExecutorService
with CyclicBarrier. The discrepancy for CyclicBarrier technique between Java 6 and Java 7 is due to the
need to introduce a waiting period after the launch of the threads (after the line 6 of the solve method).
Java 7 doesn’t require such a waiting time. A waiting period is needed by the usage of the Phaser
class, too. We must also admit that ExecutorService and CyclicBarrier offer a simpler programming
template and that the fork-join technique allows the use of recurrence formulas in parallel-concurrent
programs.

The present Java 7 release is more efficient than the last Java 6 release. The relations between the
older tools are unchanged.

References

[1] D. Kincaid, W. Cheney, Numerical Analysis Mathematics of Scientific Computing. Brooks/Cole
Publishing Company, Pacific Grove, California, 1991.

[2] J.M. Bahi, S. Contassot-Vivier, R. Couturier, Parallel Iterative Algorithms. From Sequential to Grid
Computing. Chapman & Hall/CRC, Boca Raton, 2007.

[3] J. Ponge, Fork and Join: Java can Excel at Painless Parallel Programming Too! http://www.

oracle.com/technetwork/articles/java/fork-join-422606.html.

[4] * * *, Java Fork/Join for Parallel Programming. http://www.javacodegeeks.com/2011/02/

java-forkjoin-parallel-programming.html.

Scheiber Ernest
Transilvania University of Braşov
Department of Computer Science
Str. I. Maniu 50
ROMANIA
E-mail: scheiber@unitbv.ro

6

151

