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Abstract

Consider the problem: {
y′′(x) + f(x, y) = 0, 0 < x < ∞,

y(0) = ∞, y(∞) = 0

where f(x, y) ∈ C([0,∞] × R), y(x) ∈ C1(0,∞). This is not a classical two-points boundary value
problem since y(0) = ∞, y(∞) = 0. To solve this kind of problems we need to know the values in two
inner points a, b ∈ (0,∞) , a �= b. The aim of this work is to present three approximation procedures:

1. A combined method using collocation method on B-splines of order (k+2) with a (k+1) order
Runge-Kutta method.

2. A pseudospectral collocation method with Chebychev extreme points combined with a Runge-

Kutta method.

3. MATLAB function bvp4c combined with a Runge-Kutta method.

Then we give a numerical examples and compare the costs (time U.C) using MATLAB functions
tic-toc.

1 Introduction

Consider the problem (PVP):

y′′(x) + f(x, y) = 0, x ∈ (0,∞) (1)

y(a) = α (2)

y(b) = β, a, b ∈ (0,∞), a < b. (3)

where f(x, y) ∈ C((0,∞)× R), a, b, α, β ∈ R.
We try to solve this problem using three approximation methods:

1. A combined method based on collocation with B-splines of order (k+2) and a Runge-Kutta method
order (k + 1).

2. A pseudospectral collocation method with Tchebychev extreme points combined with a Runge-
Kutta method.

3. MATLAB function bvp4c combined with a Runge-Kutta method.
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The methods are new in this context since the conditions are stated at the interior points of the interval
(0, 1). Problems of type (1)+(2)+ (3) occurs in practice. Examples are in semiclassical description of
the charge density in atoms of high atomic number (Thomas-Fermi equation) [19, pp.155-156], reaction-
diffusion equation [9], frequency domain equation for the vibrating string (Greengard-Rokhlin problem)
[11], electromagnetic self interaction theory [4, pp.336-337], the model of the steady concentration of a
substrate in an enzyme-catalyzed reaction (Michaelis-Menten kinetics)[19, page 145].

We also consider the problem (BVP):

y′′(x) + f(x, y) = 0, x ∈ [a, b] (4)

y(a) = α (5)

y(b) = β, (6)

Also it is shown that the Runge-Kutta method does not degrade the accuracy provided by the col-
location method for the (BVP) problem [4, Theorem 5.73 pp219, Theorem 5.140 pp253]. To apply the
collocation theory we need to have an isolated solution of (BVP) problem and this occurs if the above
linearized problem for y(x) is uniquely solvable.

R.D. Russel and L.F. Shampine [18] study the existence and the uniqueness of the isolated solution.
Our methods consists into decomposition of the problem (1)+(2)+(3) into three problems:

1. A (BVP) problem on [a, b] (problem (4)+(5)+(6)).

2. Two (IVPs) on (0, a] and [b,+∞).

For the existence and uniqueness of an (IVP), see [14, pp: 112-113].
If the problem (BVP) has the unique solution, the requirement y(x) ∈ C1(0,+∞) ensure the existence

and the uniqueness of the solution of the problem (PVP). Our choice to use these methods is based on
the following reasons:

1. We write the code using the function spcol in Matlab-Spline Toolbox [15] and the functions
cebdif, cebint, cebdifft contained in dmsuite [21].

2. Theoretical results on the convergence of collocation method are given in ( [12], [13]).

3. The accuracy of spectral method is superior to finite elements method (FEM) and finite difference
methods (FDM) (the rate of convergence associated with this problems with smooth conditions are
O(exp(−CN)) or O(exp(C 2

√
N) where N is the number of degrees of freedom in the expansions).

4. For each Newton iteration, the resulting linear algebraic system of equations (after using Newton
method with quasilinearization) is solved using method given in [8].

2 A combined method using B-splines and Runge-Kutta meth-
ods

First we solve the (BVP) problem using the collocation method with B-splines of order (k + 2)
presented in [17, Section 2].

Consider the mesh of [a, b]:

Δ : a = x0 < x1 < · · · < xN = b, (7)

where the multiplicity of a and b is (k + 2) and the multiplicity of inner points is k. So the dimension
of spline space is n = Nk + 2. Also we construct the collocation points ξj , j = 1, 2, ..., n− 2 like in [17,
Section 1] and [2].

We wish to find an approximate solution of the (BVP) problem, having the following form:
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uΔ(x) =

n−1∑
i=0

ciBi,k+1 (x), (8)

where Bi,k+1 (x) is the B-spline of order (k + 2).
Our approximation method is inspired from [7, Chapter 2,5]. We impose the conditions:

c1 The approximate solution (8) satisfies the differential equation (4) at collocation points:

ξj , j = 1, 2, ...n− 2 .

c2 The solution satisfies uΔ(a) = α, uΔ(b) = β.

The above conditions yield a nonlinear system with n equations:⎧⎨
⎩

∑n−1
i=0 ciBi,k+1 (a) = α,∑n−1

i=0 ciB
′′

i ,k+1 (ξj) + f(ξj ,
∑n−1

i=0 ciBi,k+1 (ξj)) = 0, j = 1, 2, ..., n− 2,∑n−1
i=0 ciBi,k+1 (b) = β,

with unknowns ci, i = 0, . . . , n − 1. If F = [F0, F1,..., FN−1] are the functions defined by the equations
of the nonlinear system, using the quasilinearization of Newton method [4, pp: 52-55], we find the next
approximation by means of

c(k+1) = c(k) − w(k),

where c(k) is the vector of unknowns obtained at the k−th step and w(k) is the solution of the linear
system

F
′

(c(k))w = F (c(k)).

To solve the (BVP) problem we use the method presented in [20] and the initial approximation
u(0) ∈ C1[0, 1] is required. The successful stopping criterion [3] is:∥∥∥u(k+1) − u(k)

∥∥∥ ≤ abstol+
∥∥∥u(k+1)

∥∥∥ reltol,
where abstol and reltol is the absolute and the relative error tolerance, respectively and the norm is the
usual uniform convergence norm. The reliability of the error-estimation procedure being used for stopping
criterion was verified in [8]. For the solution of two IVPs on (0, a] and [b,+∞) we use a Runge-Kutta
method of appropriate order, this need good approximation of y′(a) and y′(b), which could be obtained
with noadditional effort during the collocation method.

The stability and convergence of Runge-Kutta method are guaranteed in [10, Theorem 5.3.1 page
285, Theorem 5.3.2 page 288]. A (k + 1) order explicit Runge-Kutta method is consistent and stable,
so is convergent. The convergence and accuracy of our combined method to whole interval (0,+∞) was
proved in [17, Section 3, Theorem 3.1] and the total costs of this method was studied in [17, Section 4].

3 A combined method using a pseudospectral collocation with
Tchebychev extreme points and Runge-Kutta methods

Consider the grid:

Δ : 0 = x−q < ... < x−1 < a = x0 < x1 < ... < xN = b < xN+1 < ... < xN+p. (9)

Our second method is a combined a pseudospectralmethod for the (BVP) problem and a Runge-Kutta
method for the two IVPs on (0, a] and [b,+∞). The approximate solution of (BVP) problem follow the
ideas presented in [5]. Let y(x) of this problem and considering the Lagrange basis (lk) we have:

y(x) =

N∑
k=0

lk(x)y(xk) + (RNy)(x), x ∈ [a, b]
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where :

(RNy)(x) =
y(N+1)(ξ)

(N + 1)!
(x− x0)...(x− xN )

is the remainder of Lagrange interpolation. Since y(x) fulfills the differential equation (4) we obtain:

N∑
k=0

l′′k(x)y(xk) + (RNy)′′(x) = −f(xi, y(xi)), i = 1, 2, ..., N − 1.

Setting y(xk) = yk and ignoring the rest, one obtains the nonlinear system:

N∑
k=0

l′′k(x)y(xk) = −f(xi, y(xi)), i = 1, 2, ..., N − 1, (10)

with unknowns yk, k = 1, ..., N − 1, here y0 = y (a) = α and yN = y(b) = β. The approximate solution
(that is the collocation polynomial for (BVP) problem), is the Lagrange interpolation polynomial at
nodes {xk}, k = 0, 1, 2, ...N :

yN (x) =

N∑
k=0

lk(x)y(xk). (11)

The nonlinear system (10) can be rewritten as:

AYN = F (YN ) + bN

where:

A = [aik], aik = l′′k(xi), k, i = 1, 2, ..., N − 1,

F (YN ) =

⎡
⎢⎢⎢⎣

−f(x1, y1)
−f(x2, y2)

...
−f(xN−1, yN−1)

⎤
⎥⎥⎥⎦ , bN =

⎡
⎢⎢⎢⎣

−αl′′0 (x1)− βl′′N (x1)
−αl′′0 (x2)− βl′′N (x2)

...
−αl′′0 (xN−1)− βl′′N (xN−1)

⎤
⎥⎥⎥⎦ .

If the nodes {xk}, k = 0, 1, ...N are symmetric with respect of (a + b)/2, A is centro-symmetric [6, for
proof], so nonsingular. So we choose the nodes given by:

xi =
(b− a) cos πi

N + b+ a

2
, i = 1, 2, ..., N, (12)

i.e. the Chebyshev-Lobatto nodes. We introduce :

G(Y ) = A−1F (Y ) +A−1bN . (13)

To solve numerically (PVP) problem on Δ given by (9) we apply pseudo-spectral collocation method
at points [a, b] and a Runge-Kutta method to other points. To apply the Runge-Kutta method for the
solution of two (IVP) on (0, a] and [b,+∞) we need the derivatives y′(a) and y′(b), this can be computed
by deriving the formula (11). In work [5], the authors prove the existence of unique solution of the system
(10) which can be calculated by successive approximation method:

Y (N+1) = G(Y (N)), n ∈ N∗,

with Y (0) fixed and G given by (13), also they estimate the error:

‖Y − YN‖ ≤
∥∥A−1

∥∥ ‖R‖
1− ‖A−1‖L
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where

Y = [y(x1), y(x2), ..., y(xN−1)]
T ,

y(x) is the exact solution of (BVP) problem,

YN = [y1, y2, ..., yN−1]
T ,

yi are the values of approximated solution at xi computed by (12),

R = [−(RNy)′′(x1),−(RNy)′′(x2), ...,−(RNy)′′(xN−1)]
T ,

and L is the Lipschitz constant. Combining these results with the stability and convergence of Runge-
Kutta methods in [16, Theorem 2.3] the authors prove the convergence of this method and occurs:

|yN (a)− y′(a)| = O(hk),

|yN (b)− y′(b)| = O(hk),

and for each points xi in Δ giving by (9):

|yN(xi)− yi| = O(hk), i = −q, ..., N + p.

If the Runge-Kutta method is stable and has the order k, then the final solution has the same accuracy.

4 MATLAB solver bvp4c and Runge-Kutta methods

MATLAB solver bvp4c is a strong solver based on collocation. It allows a flexible description of the
ODEs, various kind of boundary conditions, parameters and options (jacobian, tolerances, vectorization
and so on). It requires a guess solution. As a side effect it provides an approximation of the derivative
of the solution. This allows us to combine bvp4c with an IVP solver.

5 Numerical examples

For the both methods we implemented the ideas in MATLAB 2010a [15], for the first method our
code use Matlab Spline Toolbox,the function spcol allows us to compute easily the collocation matrix
and for (IVP) problems the solver ode23tb works fine (when the problem is stiff).To avoid the error
propagation, we choose for (BVP) problem B-splines of order 4 (degree 3) or order 5 (degree 4), in this
we implemented the function polycalnlinRK.

The second method was implemented in MATLAB using the functions cebdif,cebint and cebdiff

contained in dmsuite and described in [21], we write the function solvepolylocalceb who solve the
nonlinear system and call the Runge-Kutta solver ode23tb. The derivatives at a and b were computed
by calling cebdifft. The third method following the idea given by [19].

In order to compare the costs (run-times) experimentally we use Matlab functions tic and toc.

• The first example is the case where we know the exact solution

Consider the (BVP) problem:⎧⎨
⎩

y′′(x) + 2π2 exp(−y(x)) = 0, 0 < x <∞,
y(1/10) = 2 ln sinπ/10,
y(9/10) = 2 ln sin 9π/10 = 2 ln sinπ/10.

(14)

The exact solution of this problem is:

y(x) = 2 ln(sin(πx)),
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and we see that the exact solution is a periodic function of the period T = 1. Using step control
algorithm [1] we determined that problem (14) has singularities in x = 0 and in x = 1. We
have set the tolerance to ε = 10−10, we took N = 1025 and maximum number of iterations
NMAX = 50. The start solution are obtained using the Lagrange interpolation polynomial with
nodes: 1/4, 5/24, 1/6. The results we have obtained after 10 iterations, run times are:

Tolerance 1st Method 2nd Method 3rd Method
10−10 0.777144 7.204652 1.350691

The graph of approximate solution are presented in Figure 1, and the errors in semi-logarithmic
scale for the first method in Figure 2(a), for the second in Figure 2(b) and for the third in Figure
2(c), respectively.
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Figure 1: Approx-solution
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(a) B-splines+Runge-Kutta
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(b) C.C+Runge-Kutta
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(c) bvp4c+Runge-Kutta

Figure 2: Errors
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• The second example is the case of unknown exact solution

y′′(x) = x−1/2y3/2, (15)

with boundary conditions:

y(0) = +∞, y(∞) = 0. (16)

This (BVP) arises in a semiclassical description of the charge density in atoms of high atomic
number. There are difficulties at both end points. These difficulties are discussed at length in
Davis (1962) and in Bender and Orszag (1999). Davis discusses series solutions for:

y(x) as x→ 0.

It is clear that there are fractional powers in the series. That is because, with y(0) = 1, ODE
requires:

y′′(x) ∼ x−1/2 as x→ 0,

and hence there be a term 4
3x

3/2 in series for y(x). Of course, there must also be lower-order terms
so as to satisfy the boundary condition at x = 0. Bender and Orszag discuss the asymptotic
behavior of y(x) , x→ 0. Verify that trying a solution of the form

y(x) ∼ axα,

yields for the start solution:

y0(x) = 144x−3.

We use for inner points a = 0.015, and b = 59. The results we have obtained after 12 iterations, run
times are:

Tolerance 1st Method 2nd Method 3rd Method
10−10 0.493448 1.204652 0.838735

The graph of approximate nonlinear solution of Fermi-Thomas problem is presented in Figure 3.
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Figure 3: The charge density in atoms of high atomic number

127



�
 

Several methods of approximation for second order nonlinear boundary value problem with boundary 
conditions at infinity  

��

�

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6 Conclusions

The running time for B-spline collocation is the shortest, because its collocation matrix is banded.
Tchebychev collocation has the longest time, since its collocation matrix is full. The bvp4c solver has an
intermediary position, since it has a different type collocation. Nevertheless, further tests are necessary.
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