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Abstract

The purpose of this paper is to introduce a new prolongation method for solving partial
differential equations by a numerical method of multilevel type. This new technique is
compared with others already existing in the literature, by means of some numerical results.

1 Introduction

The partial differential equations (PDE’s) are used for modeling various real processes and
phenomena in many different fields (fluid mechanics, thermodynamics, economics,...). Solving a
PDE is thus very important, practically and theoretically. Because the analytical solution is not
always available, it is important to consider numerical methods for approximating the solution
of such an equation.

It is well known from the literature that the most used discretization methods are the finite
difference and the finite element methods (see [1], [3]). In this paper, we use them both. In
order to do this, as in [2], [4] and [5], the domain is divided in rectangular subdomains, having
the same step on both Ox and Oy directions.The solution of the systems generated through
discretization is obtained by Gauss full elimination method. The first level on wich the solution
is computed is denoted by l0, then this particular solution is used for generating the solutions
on higher order levels, according with [4] and [5]. The grid on the l level l is divided by the
one from the l0 level in subdomains. On each of these, the system of linear equations obtained
through the discretization method will be solved.

2 The problems

1. Convection-diffusion equations
It is known that the general expression of a convection-diffusion problem in two dimensions is
given by: {

mΔu+ n� u = f, (x, y) ∈ Ω,
u = g, (x, y) ∈ ∂Ω,

where n = (n1, n2) a flow velocity field and m is the coefficient of diffusion or viscosity.
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As an example, let’s consider the following problem:{ −eΔu+ aux = f, (x, y) ∈ (0, 1)× (0, 1) = Ω,
u = 0, (x, y) ∈ ∂Ω,

(1)

where f = x(1− x) sin qy.
The exact solution in this case can be determined analytically and has the expression:
uex =

(
Ax2 +Bx+ C

)
sin qy, with A = 1

t , B = 1−2aA
t , C = 2eA−aB

t , t = eq2.
2. Poisson’s equation

The second problem we consider is given by a Poisson equation of the form:{ −Δu = f, (x, y) ∈ Ω,
u = g, (x, y) ∈ ∂Ω.

(2)

Remark. Even if the exact solutions of these two problems are relatively easy to be de-
termined, in the following paragraphs we shall compute also their numerical approximations, in
order to introduce our prolongation method and establish its efficiency.

3 Finite difference and finite element discretizations

The partial differential equations will be replaced by a liniar system of equations through
the discretization methods such as finite difference and finite element discretization.

In order to achieve this, and keeping the notations used in [4], we choose a grid step hl =
1

2l+1 ,

l being the number of the level. The corresponding number of grid points is nl = 2l+1−1 on each
direction. The grid that has a step hl = 1

nl+1 = 1
2l+1 will contain the points (xi, yj), i, j =

1, 2, . . . , nl, and will be denoted by Gl. The value of the exact solution in the point (xi, yj) is
denoted by ui,j .

Remark. The numerical solution together with all discretizations involved are made for the
convection-diffusion equation (1), because the Poisson’s equation (2) is obtained by replacing
parameter a by zero.

3.1 Second order finite difference discretization

Expanding in Taylor series the values of the function in the grid points, as in [4], one can
compute approximations of the derivatives from the differential equation:

ui+1,j = ui,j +
h

1!

∂u

∂x
(xi, yj) +

h2

2!

∂2u

∂x2
(xi, yj) +

h3

3!

∂3u

∂x3
(xi, yj) + ...; (3)

ui−1,j = ui,j − h

1!

∂u

∂x
(xi, yj) +

h2

2!

∂2u

∂x2
(xi, yj)− h3

3!

∂3u

∂x3
(xi, yj) + ... . (4)

The approximation for the second order partial derivative is then:

∂2u

∂x2
(xi, yj) =

ui+1,j − 2ui,j + ui−1,j
h2

+O(h2). (5)

An analogous result holds for the y-direction derivative:

∂2u

∂y2
(xi, yj) =

ui,j+1 − 2ui,j + ui,j−1
h2

+O(h2). (6)
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The approximation for the first order partial derivative in the x-direction is :

∂u

∂x
(xi, yj) =

ui+1,j − ui−1,j
2h

+O(h2). (7)

Equation (1) will have the following discrete formulation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−e
(
ui+1,j−2ui,j+ui−1,j

h2 +
ui,j+1−2ui,j+ui,j−1

h2

)
+ a

ui+1,j−ui−1,j

2h = fi,j ,

i, j = 1, 2, ..., nl + 1,

ui,j = 0, i ∈ {0, nl + 2} or j ∈ {0, nl + 2}.
(8)

The difference equations above are abbreviated by the stencil notation:

1

h2

⎡
⎣
⎡
⎣ −e

−e− ah
2 4e −e+ ah

2
−e

⎤
⎦
⎤
⎦u = f, (9)

where : ⎡
⎣
⎡
⎣ a b c

d e f
g h k

⎤
⎦
⎤
⎦u(i, j) = au(i− 1, j + 1) + bu(i, j + 1) + cu(i+ 1, j + 1) +

+ du(i− 1, j) + eu(i, j) + fu(i+ 1, j) + gu(i− 1, j − 1)

+ hu(i, j − 1) + ku(i+ 1, j − 1). (10)

3.2 Finite element discretization

According to [1], in order to apply the finite element discretization, some transformations
of the given equation have to be made. So, the equation to be discretized is multiplied by a test
function v, then is integrated on the domain Ω:

−e

∫∫
Ω
vΔudxdy + a

∫∫
Ω
v
∂u

∂x
dxdy =

∫∫
Ω
fvdxdy.

Using Green’s formula, the equation above becomes :

e

∫∫
Ω
�u�vdxdy − e

∫
∂Ω

v
∂u

∂n
ds+ a

∫∫
Ω
v
∂u

∂x
dxdy =

∫∫
Ω
fvdxdy,

u, v ∈ H1(Ω),

∫∫
Ω

[(
∂v

∂x

)2

+

(
∂v

∂y

)2

+ v2

]
dxdy < ∞. (11)

The functions u and v are approximated using some continuous functions, Φi (Φi(xj , yj) =
δij , i, j = 1, ..., N , N = n2

l being the number of interior points of the grid on level l), through

the relations: u ≈ ∑N
i=1 uiΦi, v ≈ ∑N

j=1 vjΦj , where ui = u(xi, yi), i = 1, ..., N. Replacing these
approximations in equation (11), the system obtained is:

N∑
j=1

Kijuj = Fi, i = 1, ..., N, (12)

where:

Kij =

∫∫
Ω

[
e

(
∂Φi

∂x

∂Φj

∂x
+

∂Φi

∂y

∂Φj

∂y

)
+ aΦi

∂Φj

∂x

]
dxdy, (13)

Fi =

∫∫
Ω
fΦidxdy. (14)
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Fig. 1.

As Ω =
⋃(nl+1)2

i=1 Ωi, the above integrals can
be rewritten as sums of integrals on the interior
domains. Because the functions Φi are differ-
ent from zero only on the subdomains immediately
next to the point (xi, yi), the sums corresponding
to the node i in the system (23) will only con-
tain the integrals on the ΩA, ΩB, ΩC and ΩD do-
mains:

K
(A)
i,i−n−1ui−n−1 +K

(A+B)
i,i−n ui−n +K

(B)
i,i−n+1ui−n+1 +K

(A+D)
i,i−1 ui−1 +K

(A+B+C+D)
i,i ui +

+K
(B+C)
i,i+1 ui+1 +K

(D)
i,i+n−1ui+n−1 +K

(C+D)
i,i+n ui+n +K

(C)
i,i+n+1ui+n+1 = F

(A+B+C+D)
i ,

i = 1, ..., N. (15)

In the equation (15) the superscript (A) or (A+B) means that the corresponding integrals in
(13) and (14) are computed on ΩA or ΩA ∪ ΩB.

Further we denote the restrictions on ΩA with ΨA
3 for Φi, Ψ

A
4 for Φi−1, ΨA

1 for Φi−n−1 and
ΨA

2 for Φi−n. If the domain ΩA is [a, b]× [c, d], then the following expresions can be obtained:

ΨA
1 =

(x− b)(y − d)

(b− a)(d− c)
,ΨA

2 = −(x− a)(y − d)

(b− a)(d− c)
,ΨA

3 =
(x− a)(y − c)

(b− a)(d− c)
,ΨA

4 = −(x− b)(y − c)

(b− a)(d− c)(
ΨA

k = ε
(x− α)(y − β)

(b− a)(d− c)
, k = 1, ..., 4

)
. (16)

The restrictions of K and F on a domain ΩA are:

kAij =

∫∫
ΩA

[
e

(
∂ΨA

i

∂x

∂ΨA
j

∂x
+

∂ΨA
i

∂y

∂ΨA
j

∂y

)
+ aΨA

i

∂ΨA
j

∂x

]
dxdy, i, j = 1, ..., 4. (17)

fA
k =

∫∫
ΩA

f(x, y)ΨA
k (x, y)dxdy, k = 1, ..., 4, (18)

With these notations, in equation (15) all the coefficients can be determined like in the
following model:

K
(A+B)
i,i−n =

∫∫
ΩA∪ΩB

[
e

(
∂Φi

∂x

∂Φi−n
∂x

+
∂Φi

∂y

∂Φi−n
∂y

)
+ aΦi

∂Φi−n
∂x

]
dxdy =

=

∫∫
ΩA

[
e

(
∂Φi

∂x

∂Φi−n
∂x

+
∂Φi

∂y

∂Φi−n
∂y

)
+ aΦi

∂Φi−n
∂x

]
dxdy +

+

∫∫
ΩB

[
e

(
∂Φi

∂x

∂Φi−n
∂x

+
∂Φi

∂y

∂Φi−n
∂y

)
+ aΦi

∂Φi−n
∂x

]
dxdy =

=

∫∫
ΩA

[
e

(
∂ΨA

3

∂x

∂ΨA
2

∂x
+

∂ΨA
3

∂y

∂ΨA
2

∂y

)
+ aΨA

3

∂ΨA
2

∂x

]
dxdy +

+

∫∫
ΩB

[
e

(
∂ΨB

4

∂x

∂ΨB
1

∂x
+

∂ΨB
4

∂y

∂ΨB
1

∂y

)
+ aΨB

4

∂ΨB
1

∂x

]
dxdy = kA32 + kB41. (19)
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Thus the equation (15) can be rewritten as:⎡
⎣
⎡
⎣ kD24 kD23 + kC14 kC13

kA34 + kD21 kA33 + kB44 + kC11 + kD22 kB43 + kC12
kA31 kA32 + kB41 kB42

⎤
⎦
⎤
⎦ui=fA

3 +fB
4 +fC

1 +fD
2 , i=1, ..., N.(20)

If x = d−c
b−a , y = d−c

h0
, and replacing (16) in (17),(18), the values on ΩA for the model problem

(1) are as follows:

(
kAij

)
i,j=1:4

=
e

6

⎡
⎢⎢⎣
⎡
⎢⎢⎣

2x+ 2
x −2x+ 1

x −x− 1
x x− 2

x
−2x+ 1

x 2x+ 2
x x− 2

x −x− 1
x

−x − 1
x x − 2

x 2x+ 2
x −2x+ 1

x
x − 2

x −x − 1
x −2x+ 1

x 2x+ 2
x

⎤
⎥⎥⎦
⎤
⎥⎥⎦+ y

ah0
12

⎡
⎢⎢⎣
⎡
⎢⎢⎣

−2 2 1 −1
−2 2 1 −1
−1 1 2 −2
−1 1 2 −2

⎤
⎥⎥⎦
⎤
⎥⎥⎦ (21)

fA
k =

ε

(b− a)(d− c)

(
x4

4
− (1 + α)

x3

3
+ α

x2

2

)
b

a

(
(y − β) cos qy

q
− sin qy

q2

)
d

c

. (22)

4 Prolongation methods
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u
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. . .

Ωn+2 Ω2n+2

Ω(n+1)2

Fig. 2.

The systems of equations (9) or (20) generated in
the previous section can be written on any level l.
Each system contains n2

l unknowns. The solution is
exactly computed on a level l0, for example on l0=2
or l0=3 using Gauss elimination method with partial
pivoting. Thus the exact solution on the level l0, for
the problem is approximated by ui, i ∈ {1, 2, ..., n2

l0
}

(Fig. 2.), wich only contains an error due to the
discretization.

In order to solve problem on the level l, the grid
already obtained has to be further divided. Thus,
each domain from the grid, Ωk, k = 1, ..., (n0 + 1)2,
will be splitted into (ni + 1)2 subdomains, where
ni = 2li+1−1, and li = l−l0−1. On each subdomain
Ωk, the discretization of the differential equation leads to a system whose matrix has the same
form as the one on l0 level. But on the level l0 the boundary values were given in the hypothesis.
For the systems on the level l to be precisely solved on Ωk, one has to determine as accurate
as possible the ni interior values on each of the sides of the domain Ωk. Two possible ways to
accomplish this are given in the following subsections.

4.1 Pondered arithmetic mean prolongation

As in [2], the value of the approximation on level l is denoted by u(l). On the borders of Ωk,
they are defined through the following relations (n = nl0 , ni = nli , li= l−l0−1, N=ni+1):

u
(l)
jN+1,iN+1 = u

(l0)
(i−1)n+j , i = 0, .., n, j = 1, .., n for the common points of the grids Gl0 and Gl.

For the grid points of Gl that do not belong to Gl0 :

u
(l)
jN+1,iN+1+k = 1

N

(
ku

(l0)
in+j + (N − k)u

(l0)
(i−1)n+j

)
, i = 0, ..., n, j = 1, ..., n;

u
(l)
jN+1+k,iN+1 =

1
N

(
ku

(l0)
(i−1)n+j+1 + (N − k)u

(l0)
(i−1)n+j

)
, i = 1, ..., n, j = 0, ..., n, k = 1, ..., ni.
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4.2 Stellar prolongation

In what follows, we introduce a new type of prolongation which we call ”stellar prolongation”
because the nodes involved in computation are in the shape of a star.

In order to determine more accurately the values of the solution on the borders of Ωk,
instead of pondered arithmetic mean prolongation one can use the solutions of the systems ob-
tained discretizing the initial equation in the grid points corresponding to the values ai and bi,
i = 1, 2, ..., n2 + n, n = nl0 from Fig. 4 and Fig. 5.
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ζ� �

4.2.1 Finite difference discretization

The values ak, k = 1, 2, ..., n0(n0 + 1) depend on their vertical distance, ζ, from the old grid G0

(marked with the thin lines in Fig.4) and will be further denoted by ak(ζ), ζ = jh, j = 1, ..., ni.
They are the solutions of the following system:

Aa = T (23)

where the matrix A is:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C D Θ ... Θ Θ
S C D ... Θ Θ
Θ S C ... Θ Θ
...

. . .
...

. . .

Θ Θ Θ ... S C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (24)

C =

⎡
⎢⎢⎢⎢⎢⎣

qc qr 0 ... 0
ql qc qr ... 0
0 ql qc ... 0
...

. . .

0 0 0 ... qc

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎣

qu 0 0 ... 0
0 qu 0 ... 0
0 0 qu ... 0
...

. . .

0 0 0 ... qu

⎤
⎥⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎣

qd 0 0 ... 0
0 qd 0 ... 0
0 0 qd ... 0
...

. . .

0 0 0 ... qd

⎤
⎥⎥⎥⎥⎥⎦ ,
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For the first and the last line of blocks in A, the neighbours of the node where
the discretization is made are illustrated in Fig. 6. For the first line: x = h0

ζ ,

y = 1, for the last one: x = 1, y = h0
h0−ζ , whereas for the remaining lines: x = 1

and y = 1.

⎡
⎣
⎡
⎣ qu

ql qc qr
qd

⎤
⎦
⎤
⎦ =

⎡
⎣
⎡
⎣ −eαy

−e− ah0
2 e[2 + α(x+ y)] −e+ ah0

2
−eαx

⎤
⎦
⎤
⎦ .

The vector of constant terms, T , has the components:

tin+j = h20f (jh0, (ih0 + ζ))−
⎡
⎣
⎡
⎣ qu

ql qc qr
qd

⎤
⎦
⎤
⎦ufr (jh0, (ih0 + ζ)) ,

i = 0, ..., n0, j = 1, ..., n0,

ufr being a function which is zero inside the domain Ω on wich the system is solved and equal
to the border values on ∂Ω and h0 is the grid step on l0 level.

According to the kind of discretization that is used, the values of the parameter α are:
α = xy

x+y (symmetric finite differences), α = x (backward finite differences), α = y (forward
finite differences).

×

×

�

�

�

. . . . . .

. . . . . .
a1(nih)

a1(h)

...

a1(2h)

Ω1 Ω2

Fig. 7.

As ζ takes the values h, 2h, ..., nih, the values ak(ζ) obtained from
the system (23) will be used as border data on the vertical sides of
Ωk (for example, on the right vertical side of Ω1 and the left side
for Ω2, they are corresponding to the points marked with a dot in
Fig.7).

The values bk(ζ), k = 1, 2, ..., n0(n0 + 1) depend on their horizontal pozition, ζ (see Fig.5)
and are computed by solving a system whose matrix is also of the form (24), but in which:

C =

⎡
⎢⎢⎢⎢⎢⎣

qc qu 0 ... 0
qd qc qu ... 0
0 qd qc ... 0
...

. . .

0 0 0 ... qc

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎣

qr 0 0 ... 0
0 qr 0 ... 0
0 0 qr ... 0
...

. . .

0 0 0 ... qr

⎤
⎥⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎣

ql 0 0 ... 0
0 ql 0 ... 0
0 0 ql ... 0
...

. . .

0 0 0 ... ql

⎤
⎥⎥⎥⎥⎥⎦ ,

�

�

�

� �

h0

h0

h0
x

h0
y

Fig. 8.

For the first and the last line of blocks in B, the nodes involved in the
discretization are illustrated in Fig. 8. For the first line x = h0

ζ , y = 1, for

the last one x = 1, y = h0
h0−ζ , and for the remaining lines: x = 1 and y = 1.

⎡
⎣
⎡
⎣ qu
ql qc qr

qd

⎤
⎦
⎤
⎦=

⎡
⎣
⎡
⎣ −e
−eαx+ ah0ρδ e[2 + α(x+ y)] + aγρ eαy + ah0ρβ

−e

⎤
⎦
⎤
⎦ .
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The constant terms vector now has the components:

tin+j = h20f ((ih0 + ζ) , jh0)−
⎡
⎣
⎡
⎣ qu

ql qc qr
qd

⎤
⎦
⎤
⎦ufr ((ih0 + ζ) , jh0) ,

i = 0, ..., n0, j = 1, ..., n0.

× ×�� �

...

...

...

...

b1(nih)b1(h) . . .

b1(2h)
���

Ω1

Ωn0+2

Fig. 9.

The values bk(ζ), ζ = 1, ..., ni obtained from the system (23),
with the matrix components described above, will be used as
border data on the horizontal sides of Ωk (for example, on
the lower horizontal side of Ωn0+2 and the upper side for Ω1,
they are corresponding to the points marked with a dot in
Fig.9).

4.2.2 Finite element discretization

If the discretization is made by the finite element method, the same computing method is used,
the only changes are in the matrices components. If we denote:

⎡
⎣
⎡
⎣ l1 l2 l3

l4 l5 l6
l7 l8 l9

⎤
⎦
⎤
⎦ =

⎡
⎣
⎡
⎣ kD24 kD23 + kC14 kC13

kA34 + kD21 kA33 + kB44 + kC11 + kD22 kB43 + kC12
kA31 kA32 + kB41 kB42

⎤
⎦
⎤
⎦ ,

where kij is given by (21), than the matrix A has:

C =

⎡
⎢⎢⎢⎢⎢⎣

l5 l6 0 ... 0
l4 l5 l6 ... 0
0 l4 l5 ... 0
...

. . .

0 0 0 ... l5

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎣

l2 l3 0 ... 0
l1 l2 l3 ... 0
0 l1 l2 ... 0
...

. . .

0 0 0 ... l2

⎤
⎥⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎣

l8 l9 0 ... 0
l7 l8 l9 ... 0
0 l7 l8 ... 0
...

. . .

0 0 0 ... l8

⎤
⎥⎥⎥⎥⎥⎦ ,

and the components of the constant terms vector:

tin+j = fA
3 + fB

4 + fC
1 + fD −

⎡
⎣
⎡
⎣ l1 l2 l3

l4 l5 l6
l7 l8 l9

⎤
⎦
⎤
⎦ufr (jh, (i+ x0)h) ,

i = 0, ..., n, j = 1, ..., n.

For the B matrix:

C =

⎡
⎢⎢⎢⎢⎢⎣

l5 l2 0 ... 0
l8 l5 l2 ... 0
0 l8 l5 ... 0
...

. . .

0 0 0 ... l5

⎤
⎥⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎢⎣

l6 l3 0 ... 0
l9 l6 l3 ... 0
0 l9 l6 ... 0
...

. . .

0 0 0 ... l6

⎤
⎥⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎣

l4 l1 0 ... 0
l7 l4 l1 ... 0
0 l7 l4 ... 0
...

. . .

0 0 0 ... l4

⎤
⎥⎥⎥⎥⎥⎦ .
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The components of the constant terms vector:

tin+j = fA
3 + fB

4 + fC
1 + fD

2 −
⎡
⎣
⎡
⎣ l1 l2 l3

l4 l5 l6
l7 l8 l9

⎤
⎦
⎤
⎦ufr ((i+ x0)h, jh) ,

i = 0, ..., n, j = 1, ..., n,

In the matrix A: x = x0 and y = x0 for the first line of blocks in (21), on ΩA and ΩB, x = 1
and y = 1 on ΩC and ΩD, while x = 1 and y = 1 for the last line of blocks on ΩA and ΩB, and
x = 1− x0 , y = 1− x0 on ΩC and ΩD. For the remainder of the lines: x = 1 and y = 1.

For the matrix B: x = 1
x0

and y = 1 for the first line of blocks on ΩA and ΩD, x = 1 and
y = 1 on ΩB and ΩC . The last line has: x = 1 and y = 1 on ΩA and ΩD, and on ΩB and ΩC

x = 1
1−x0

and y = 1. For the other lines: x = 1 and y = 1.

5 Solving method

b(j−1)n0+i(kh)

ain0+j−1(kh)

ain0+j−1(h)

...

...

ain0+j−1(nih)

b(j−1)n0+i+1(kh)

ain0+j(kh)

ain0+j(h)

ain0+j(nih)

...

...

ΩiN0+j

�

�

�

�

�

�

�

�

�

×

×

×

×

�

�

�

�

�

�

�

�

�

� � � � � � � � �

� � � � � � � � �

Fig. 10.

The differential equation is first discretized
on a grid G0 and the solutions obtained solving
the system resulted are the values ui, i = 1, ..., n2

0

situated in the corners of the subdomains Ωk,
k = 1, ..., n0(n0 + 1) (Fig. 2 ).

These values are then used to compute ak and
bk, k = 1, ..., n0(n0 + 1) for each ζ = jh,
j = 1, ..., ni (as in Section 4.1 or 4.2).

Thus, on every subdomain ΩiN0+j ,
i=0, ..., n0, j=1, ..., n0, N0=n0+1 the values on the
frontiers are now known:

u
(l)
(j−1)N+1,iN+1+k = ain0+j−1(kh), u

(l)
(j−1)N+1+k,iN+1 = b(j−1)n0+i(kh),

k = 1, ..., n0(n0 + 1), j = 1, ..., ni, h = 1
nl+1 (see Fig. 10).

The problem is now discretized the on each subdomain ΩiN0+j , i = 0, ..., n0, j = 1, ..., n0 and
the solution obtained will represent the components of the final solution on the grid Gl.

Reuniting the solutions computed on the grid corresponding to the level l0 and the ones from
every subdomain, the final solution on the work level l is obtained.

6 Numerical results

In order to give some numerical results, we denote by:
FD-PAM: the finite difference discretization with pondered arithmetic mean prolongation,
FD-SP: the finite difference discretization with stellar prolongation,
FEM-SP: the finite element discretization with stellar prolongation.

We have computed the infinity norm of the difference between the computed solution and
the exact solution. If the grid on the level l is Gl = {(xi, yj), i, j = 1, 2, ..., nl}, then the error is:

ξ = ||uex − ul||∞ = max{|uex(x, y)− ul(x, y)|, (x, y) ∈ Gl}.
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In the following table there are the errors for the convection-diffusion problem (1)
(uex ≤ 1.7839 · 104).

Level ξFD−PAM ξFD−SP ξFEM−SP
l=3 32.8788 25.3345 0.7798

l=4 32.8788 25.3345 0.7877

l=5 32.8788 25.3345 0.7877

In order to compare the previous methods applied on a Poisson problem, we consider the
following problems of this type, and their exact solutions.

Pr.1

{ −Δu = −4, (x, y) ∈ (0, 1)× (0, 1),
u(x, y) = x2 + y2 = uex(x, y), (x, y) ∈ ∂Ω.

Pr.2

{
−Δu = − 3y

x+1 − y3

(x+1)3
, (x, y) ∈ (0, 1)× (0, 1),

u(x, y) = 0.5 y3

x+1 = uex(x, y), (x, y) ∈ ∂Ω.

Pr.3

{
−Δu = − 3y

x+0.1 − y3

(x+0.1)3
, (x, y) ∈ (0, 1)× (0, 1),

u(x, y) = 0.5 y3

x+0.1 = uex(x, y), (x, y) ∈ ∂Ω.

Pr.4

{ −Δu = 2π2 sinπx cosπy, (x, y) ∈ (0, 4)× (0, 1),
u(x, y) = 0, (x, y) ∈ ∂Ω;

uex(x, y) = sinπx cosπy.

Pr.5

{ −Δu = α sin πy
b , (x, y) ∈ [0, λ]× [0, b],

u(x, y) = 0, (x, y) ∈ ∂Ω.

uex(x, y) = −α
(
b
π

)2
sin πy

b

(
e

πx
b − 1

)
,

α = Fπ
Rb , λ = 107, b = 2π · 106, F = 0.3 · 10−7, R = 0.6 · 10−3.

Pr.1 ξFD−PAM ξFD−SP ξFEM−SP
l=3 3.9·10−03 3.3·10−03 0.5968

l=4 3.4·10−03 3.3·10−03 0.5968

l=5 3.5·10−03 3.3·10−03 0.5967

Pr.2 ξFD−PAM ξFD−SP ξFEM−SP
l=3 4.9075 · 10−3 3.4025 · 10−3 2.2406·10−4
l=4 4.9075 · 10−3 3.4025 · 10−3 2.2406·10−4
l=5 4.9075 · 10−3 3.4428 · 10−3 2.2406·10−4

Pr.3 ξFD−PAM ξFD−SP ξFEM−SP
l=3 0.4407 0.1930 0.0195

l=4 0.4407 0.4493 0.0195

l=5 0.4407 0.4600 0.0195

Pr.4 ξFD−PAM ξFD−SP ξFEM−SP
l=3 0.0170 0.0185 0.0042

l=4 0.0170 0.0185 0.0042

l=5 0.0170 0.0185 0.0042
Pr.5 ξFD−PAM ξFD−SP ξFEM−SP
l=3 2.4991·10−20 1.7752·10−20 1.1379·10−20
l=4 2.4991·10−20 1.7752·10−20 1.3814·10−20
l=5 2.5688·10−20 1.7752·10−20 1.5718·10−20

7 Conclusions

The numerical results indicate that our stellar prolongation method is more efficient than others
used in the literature. Even if we applied it on some particular cases, we expect this behavior
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to be the same on other more general problems, too.
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