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Abstract

The purpose of this paper is to introduce a new prolongation method for solving partial
differential equations by a numerical method of multilevel type. This new technique is
compared with others already existing in the literature, by means of some numerical results.

1 Introduction

The partial differential equations (PDE’s) are used for modeling various real processes and
phenomena in many different fields (fluid mechanics, thermodynamics, economics,...). Solving a
PDE is thus very important, practically and theoretically. Because the analytical solution is not
always available, it is important to consider numerical methods for approximating the solution
of such an equation.

It is well known from the literature that the most used discretization methods are the finite
difference and the finite element methods (see [1], [3]). In this paper, we use them both. In
order to do this, as in [2], [4] and [5], the domain is divided in rectangular subdomains, having
the same step on both Ox and Oy directions.The solution of the systems generated through
discretization is obtained by Gauss full elimination method. The first level on wich the solution
is computed is denoted by Iy, then this particular solution is used for generating the solutions
on higher order levels, according with [4] and [5]. The grid on the [ level [ is divided by the
one from the [y level in subdomains. On each of these, the system of linear equations obtained
through the discretization method will be solved.

2 The problems

1. Convection-diffusion equations
It is known that the general expression of a convection-diffusion problem in two dimensions is
given by:
mAu+nsyu=f (z,y) €Q,
{ u=4g, (x,y)eafl,

where n = (n1,n2) a flow velocity field and m is the coefficient of diffusion or viscosity.
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As an example, let’s consider the following problem:

{ —eAu + AUy = f) (:an) € (07 1) x (0’ 1) Q’ (1)
’U,ZO, (xay) e@Q,

where f = z(1 — x) sin qy.
The exact solution in this case can be determined analytically and has the expression:
Ueg = (Az? + Bz + C) sinqy, with A = %, B = 17%“‘4, C= 726‘4;“3,15 =eq>.
2. Poisson’s equation
The second problem we consider is given by a Poisson equation of the form:

—Au = f, (:Uay) € Q,
{ u=g, (x,y) € . (2)

Remark. Even if the exact solutions of these two problems are relatively easy to be de-
termined, in the following paragraphs we shall compute also their numerical approximations, in
order to introduce our prolongation method and establish its efficiency.

3 Finite difference and finite element discretizations

The partial differential equations will be replaced by a liniar system of equations through
the discretization methods such as finite difference and finite element discretization.
In order to achieve this, and keeping the notations used in [4], we choose a grid step h; = 21%,

[ being the number of the level. The corresponding number of grid points is n; = 24 on each
direction. The grid that has a step h; = nll+1 = 21% will contain the points (z;,y;),1,7 =
1,2,...,n, and will be denoted by G;. The value of the exact solution in the point (z;,y;) is
denoted by u; ;.

Remark. The numerical solution together with all discretizations involved are made for the
convection-diffusion equation (1), because the Poisson’s equation (2) is obtained by replacing

parameter a by zero.

3.1 Second order finite difference discretization

Expanding in Taylor series the values of the function in the grid points, as in [4], one can
compute approximations of the derivatives from the differential equation:

h Ou h? 0% h3 9By

Uiyl,j = Uij + ﬂ%(xi;yj) + a@(mivyj) + 5@(%‘,%) + (3)
h Ou h2 9% W3 9By

Ui—1j = Ujj — ﬂ%(xi7yj) + a@(a:i,yj) — g@(l‘i,yj) + ... (4)

The approximation for the second order partial derivative is then:

2
9 u Uit1,j = 2Uij + Uiv1,

@(ﬂci, yj) = 2 +O(n?). (5)
An analogous result holds for the y-direction derivative:

aQU Ui 41 — 2Ui Ui

Tyg(xiayj) — hg’] T+ 0(h?). (6)
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The approximation for the first order partial derivative in the z-direction is :

ou Ui4+1,5 — Ui—1,5
g (i) = — e O(h), (7)

Equation (1) will have the following discrete formulation:

Wit1,j—2UijFUio1,j | i1 2% U1 Witl,j —Wimlj _ f
—€ ( p) + R2 +a = fz,]v

h 2h
,7=12,...,m +1, (8)
uij =0, i€ {0,n;+2} or j €{0,n; +2}.

The difference equations above are abbreviated by the stencil notation:

—e

% —e— 2 de —e+ L ||u=f, (9)
—e
where :
a b ¢
d e f||u(i,j) = au(i—1,j+1)+bu(i,j+1)+cu(i+1,7+1)+
g h k + du(i—1,j5) +eu(i,j) + fu(i+1,5) + gu(i — 1,5 — 1)
+ hu(i,j—1)+ku(i+1,j—1). (10)

3.2 Finite element discretization

According to [1], in order to apply the finite element discretization, some transformations
of the given equation have to be made. So, the equation to be discretized is multiplied by a test
function v, then is integrated on the domain 2:

e// vAudxdera// v@d:ndy: // fudady.
Q o Oz Q

Using Green’s formula, the equation above becomes :

e// VuVUd:L‘dy—e/ Uauds+a// vauda:dy:// fudzdy,
Q o On o Oz Q
ov\? ov\?
1 ov ov 2
u,veH(Q),//Q [(83:) +<8y> +v

The functions u and v are approximated using some continuous functions, ®; (®;(x;,vy;) =
0ij, 4, = 1,.., N, N = nl2 being the number of interior points of the grid on level 1), through
the relations: u =~ Zf\il u; O, v~ Zjvz1 v;®;, where u; = u(z;,vy;),7 = 1,..., N. Replacing these
approximations in equation (11), the system obtained is:

dxdy < oo. (11)

N
> Kijuj=Fi=1,..,N, (12)
j=1
where:
0®; 00, 0P; 0D, 0D,
K = 1095 L COTN ) 00,00 | 1
J //Q[e<8x 6:U+8y 8y>+a 833] zdy, (13)

F, = / /Q f®;dady. (14)
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As Q = Ugillﬂ)zﬁi, the above integrals can 4 3[4 3] Uitn4l
be rewritten as sums of integrals on the interior D C
domains. Because the functions ®; are differ- Ui—1 1 aglhi  2q Uitl
ent from zero only on the subdomains immediately ! | ’

. . A B
next to the point (z;,y;), the sums corresponding
to the node i in the system (23) will only con- U1 & 2ol .
tain the integrals on the Q4, Qp, Q¢ and Qp do- _
mains: Fig. 1.
Ki(?)n Uimn1 +Kl(;4+nB)u2 n+Kz(z)n+1“l n+1+Kz(z . )ui,1+K(4+B+C+D)ui+

(A+B+C+D)
F; ,

i=1,..,N. (15)

+C C+D
+Kz(z+1 )U’H‘l + KZ(’HZH 1Witn—1 + K2(1+n : Witn + Ki(,iJ)rnJrlui‘Fn‘i‘l =

In the equation (15) the superscript (A) or (A+B) means that the corresponding integrals in
(13) and (14) are computed on Q4 or Q4 U Qp.

Further we denote the restrictions on 24 with \1134 for ®;, \I/jf for ®; 1, \11‘14 for ®;_,,_1 and
U4 for ®;_,. If the domain Q4 is [a,b] x [c,d], then the following expresions can be obtained:

The restrictions of K and F' on a domain Q4 are:

ouA UL gpA gU4 w4
k;}‘://ﬂ e(a‘xZ aaf + ayz 3yj +aU# 3:; dzdy, i,57=1,..,4. (17)
A

£t :/Q fa, )V (2, y)dady, k=1,..,4, (18)

With these notations, in equation (15) all the coefficients can be determined like in the
following model:

(A+B) 0®; 00—, 09¥;09;_, 0P,
KB o, | dwdy =
L= //QAUQB [6 ( oxr Ox + oy Oy ta oz vy
o0P; 0®,_, 8<I>i oP;_,, o0P;_,,
— o;—"
/L, ( R T IRY. J oy +
n // o0P; 0®,_, (‘9<I>Z~ o0D;_,
ap L \ Oz Oz 8y oy
A g A A oA A
_ // (a\p 0ug | 9% a\P2>—|—a\IIAa\I’2}dxdy+
QA

dr Oz ay dy 30
It
Qp L

0P,
; dwdy =
¢ ox ] ey

0wl vk aq/f aqﬂf) - 5 OUP
4

_ 1A B

Oz
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Thus the equation (15) can be rewritten as:

AkﬁD A k%+kg4 D Bklcgc A, ¢B, ¢C , ¢D .
ksy + kg kas + kg + kG Hhy ki +kpn ||w=fi+ 0+ +Hfi=1, .., N.(20)
k4 ks 4+ kB k2

Ifox = g:g, Yy = dh_oc, and replacing (16) in (17),(18), the values on Q4 for the model problem
(1) are as follows:

-2
aho -2
12 -1
-1

B ED

8

|
8 =8 (B INg =
— =N N
NN = =

(22)

' <(y—ﬁ) cosqy sinqy)
q q*

c

4 Prolongation methods

The systems of equations (9) or (20) generated in n+2
the previous section can be written on any level [. i (hp
Each system contains le unknowns. The solution is ) n?
exactly computed on a level [y, for example on [j=2
or lp=3 using Gauss elimination method with partial
pivoting. Thus the exact solution on the level [y, for
the problem is approximated by u;,i € {1,2, ..., nfo}
(Fig. 2.), wich only contains an error due to the
discretization.

In order to solve problem on the level [, the grid 3 U 1] Urt2 uzn
already obtained has to be further divided. Thus, , ke fonts
each domain from the grid, Qx, k = 1,..., (ng + 1)2, 0 162 m &Lﬂ
will be splitted into (n; + 1)? subdomains, where L . s ntint2
n; =24t —1 and [; = I—ly—1. On each subdomain Fig. 2.
Qy, the discretization of the differential equation leads to a system whose matrix has the same
form as the one on [y level. But on the level [y the boundary values were given in the hypothesis.
For the systems on the level [ to be precisely solved on €1, one has to determine as accurate
as possible the n; interior values on each of the sides of the domain ;. Two possible ways to
accomplish this are given in the following subsections.

4.1 Pondered arithmetic mean prolongation

As in [2], the value of the approximation on level [ is denoted by . On the borders of Q,
they are defined through the following relations (n = ny,, n; = ny,, li=I1-lp—1, N=n+1):

uy]{,H’iNH = ugli(i)l)nﬂ,i =0,.,n,j =1,..,n for the common points of the grids G, and Gj.

For the grid points of G; that do not belong to Gy, :

({1 1 (lo) (lo) . o .
ujN+1,iN+1+k N (kuir?Jrj + (N - k’)u(i(ll)nJrj) i =0,.,n,5=1,...,n;

O] _ 1 (lo) (lo) o o _
UjN {1 kiNt Ll = N (ku(igl)nﬂﬂ + (N — k)u(i‘il)nﬂ.) yvi=1,..,n,7=0,...,nk=1,..n;
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4.2 Stellar prolongation

In what follows, we introduce a new type of prolongation which we call ”stellar prolongation”

because the nodes involved in computation are in the shape of a star.

In order to determine more accurately the values of the solution on the borders of €2,
instead of pondered arithmetic mean prolongation one can use the solutions of the systems ob-
tained discretizing the initial equation in the grid points corresponding to the values a; and b;,

i=1,2,..,n? +n,n = ny from Fig. 4 and Fig. 5.

—><<—

Fig. 4. Fig. 5.

4.2.1 Finite difference discretization

n2+1an2+ a’n2+n n + 2
n+l T 52,
o
A\
= zoho
In+1 [An+2 a2n AC b2 | |bntg b 24h
1 2
Jor Jaz an by | |bpq 244
I 2 3 n+2 b1 2 3 n+2

The values ag, k = 1,2,...,n9(ng + 1) depend on their vertical distance, ¢, from the old grid Gy
(marked with the thin lines in Fig.4) and will be further denoted by ax(¢), ¢ = jh,j =1, ..., n,.

They are the solutions of the following system:

Aa=T
where the matrix A is: ~ _
C D © 0 0
S C D e 6
e S C e 06
A= ,
| © 6 6 S C |
(g ¢ 0 ... 0] [qu 0 0 ... 0] [qqa 0 O
@ e Gr 0 0 qu O 0 0 g O
C = 0 q qc 0 .D = 0 0 gqu 0 LS = 0 0 gqg
L 0 0 0 dc | | 0 0 O Qu | L 0 0 0
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For the first and the last line of blocks in A, the neighbours of the node where
the discretization is made are illustrated in Fig. 6. For the first line: z = %,

y =1, for the last one: x =1, y = #ﬂc, whereas for the remaining lines: =z =1

and y = 1.
qu —eay
Fig. 6. @ g @ || =|| —e— % e24alz+y)] —e+ e
dd —eax

The vector of constant terms, 7', has the components:

qu

tin-i—j = h%f (jh07 (/LhO + C)) - qgi 4c Qqr Ufr (jh07 (/Lh’o + C)) )
qd

1= 0, ...,no,j = 1, ..., NQ,

uy, being a function which is zero inside the domain €2 on wich the system is solved and equal
to the border values on 02 and hg is the grid step on [y level.

According to the kind of discretization that is used, the values of the parameter « are:
a = 22 (symmetric finite differences), o = x (backward finite differences), o = y (forward

finite differences).

f?l(nlh) As ( takes the values h, 2h, ..., n;h, the values ax(¢) obtained from
the system (23) will be used as border data on the vertical sides of
0 Qo O (for example, on the right vertical side of ©; and the left side
s a1(2h) for s, they are corresponding to the points marked with a dot in
s a1(h) Fig.7).
Fig. 7.

The values bg(¢),k = 1,2,...,n9(no + 1) depend on their horizontal pozition, ¢ (see Fig.5)
and are computed by solving a system whose matrix is also of the form (24), but in which:

9 Gu 0 ... 0 g 0 0 .. O g 0 0 .. O
qd Ge¢ Gu --- O 0O g 0 ... O O ¢g 0 ... O
c=190 g ¢ .. O .D = 0O 0 ¢ .. O S = 0 0 ¢ 0 ’
L 0 0 0 .. g | L 0 0 0 .. g | L0 0 0 ... q |
' For the first and the last line of blocks in B, the nodes involved in the
i ho . discretization are illustrated in Fig. 8. For the first line x = %, y =1, for
v EO the last one z =1, y = #EC’ and for the remaining lines: x =1 and y = 1.
| a qc g ||=|| —eax + ahopd e[2+ alzx+y)] +ayp eay+ ahopf
Fig. 8. dd €
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The constant terms vector now has the components:

qu

tints = hif ((Gho +C),jho) = || @ ¢ @ || wpr ((iho + ), jho)

Qn0+2

bi(2h) :

0
Fig. 9.

qd
1=0,...,n0,5=1,...,n0.

The values bx(¢),( = 1,...,n; obtained from the system (23),
with the matrix components described above, will be used as
border data on the horizontal sides of ) (for example, on
the lower horizontal side of €,,12 and the upper side for €,

they are corresponding to the points marked with a dot in
Fig.9).

4.2.2 Finite element discretization

If the discretization is made by the finite element method, the same computing method is used,
the only changes are in the matrices components. If we denote:

I 1l
ly s
Iy g

A i D LA k%’ N k% D Bk% c
= || k34 ‘:km kss + ]‘@}44 + k‘g + kay ki3 ‘Eku )
ks gy + kg ki

where k;; is given by (21), than the matrix A has:

ls lg O
ly ls g
c=10 Iy Is

0 0 O

0 lp I3 0 .. 0 ls lg9y 0 ... 0O

0 iy I I3 ... O ly lg lg ... O

0 7D: 0 ll l2 0 ’S: 0 l7 lg 0 ,
Is | 00 0 .. ] 00 0 .. s |

and the components of the constant terms vector:

I 1y I3
tinei =3+ B O+ P — || e 15 I || upe (Gh, (i + 20) ),
I Is o

For the B matrix:

Ils lo 0O

ls Is o

C = 0 ls l5
0 0 0

1=0,...,n,5=1,...,n.

0 l6 l3 0 0 l4 l1 0 0
0 19 l6 l3 0 l7 l4 l1 0
0 ’D — 0 lg 16 0 75 — 0 l7 l4 0
I5 | L 00 0 .. | 00 0 .. |
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The components of the constant terms vector:

lh Iy I3
tingj =8+ B CH || 15 s || wpr ((+20) by jh),
7 g g

1=0,...,n,5=1,...,n,

In the matrix A: x = xg and y = x for the first line of blocks in (21), on 24 and Qp, z =1
and y =1 on Q¢ and Qp, while x = 1 and y = 1 for the last line of blocks on Q4 and g, and
r=1—xz9,y=1—290on Q¢ and Qp. For the remainder of the lines: z =1 and y = 1.

For the matrix B: z = ?10 and y = 1 for the first line of blocks on Q4 and Qp, z = 1 and

y=1on Qp and Q¢. The last line has: £ =1 and y =1 on 24 and Qp, and on Q5 and Q¢
T =7 L_ and y = 1. For the other lines: z =1 and y = 1.

—x0

5 Solving method

The differential equation is first discretized b(j—1)ng+i+1(kh)
on a grid Gy and the solutions obtained solving  @ing+j—1(nih) Ging+j (nih)
the system resulted are the values u;,t =1, ..., n% : :
situated in the corners of the subdomains €,
k=1,..,n0(no +1) (Fig. 2). @ing+j—1(kh) QiNo+j Ging+5 (kh)
These values are then used to compute aj and : :
br, k=1, ...,n9(no + 1) for each ¢ = jh,

in, i—1(h in i(h
j=1,...,n; (as in Section 4.1 or 4.2). @ino+i=1(7) aino+5 (1)
Thus, on every subdomain £2;n, 4, b(j—1)ng+i(kh)
=0, ..., ng, j=1, ..., ng, No=ng+l the values on the Fig. 10.

frontiers are now known:

ug')—l)N+1,iN+1+k = Ging+j-1(kh), “8‘)—1)N+1+k,uv+1 = b(j—1)ng+i(kh),
kE=1,..,n9(no+1),7=1,....,n;,h = ﬁ (see Fig. 10).
The problem is now discretized the on each subdomain ;n, 4,7 =0,...,n0,7 = 1,...,n9 and
the solution obtained will represent the components of the final solution on the grid Gj.
Reuniting the solutions computed on the grid corresponding to the level [y and the ones from
every subdomain, the final solution on the work level [ is obtained.

6 Numerical results

In order to give some numerical results, we denote by:
FD-PAM: the finite difference discretization with pondered arithmetic mean prolongation,
FD-SP: the finite difference discretization with stellar prolongation,
FEM-SP: the finite element discretization with stellar prolongation.

We have computed the infinity norm of the difference between the computed solution and
the exact solution. If the grid on the level I is G; = {(x;,v;),4,j = 1,2,...,y }, then the error is:

6 = ||uex - Ul||oo = ma${|uex($7y) - Ul($,y)|, (.’E,y) € Gl}
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In the following table there are the errors for the convection-diffusion problem (1)

(tex < 1.7839 - 10%).

Level | épp_pam | Erp—sp | EFEM-—sP
=3 32.8788 25.3345 0.7798
=4 32.8788 25.3345 0.7877
=5 32.8788 25.3345 0.7877

In order to compare the previous methods applied on a Poisson problem, we consider the

following problems of this type, and their exact solutions.

Pr.1 —AU = _47 (IZI,y) € (07 1) X (07 1)7
T w@,y) =22 4 P = vea(z,y), (x,y) € O
Pr.2 {

Pr.3 {
—Au = 272 sin 7z cos 1y,
brd { u(z,y) =0,

3 3
—Au= -2 -

3
u($7y) = 05%{.1 = ueaz(may)u

(z,y) € (0,1) x (0,1),
(z,y) € 00.

Ay = B3y Y
Au= =767 (@+0.1)3°

3
U(.Z',y) = 05% = uex(:r,y),

(z,y) € (0,1) x (0,1),
(z,y) € ON.

(z,y) € (0,4) x (0,1),
(xz,y) € 08;

Uez (T, y) = sinmx cos Ty.
—Au=asin ¥, (z,y) € [0,\] x [0, 5]

b ) ) ) ) )

b { u(z,y) =0, (x,y) € 0.
b

Uez (T, Y) = —a (;)2Sin%y (ebe — 1) ,

o= A=10"b=2r 105 F =0.3-10"",R = 0.6 - 1073,

Pr.1 | épp—pam | §pp-sp | EpEM—-sp Pr.2 | Epp—pAM EFD-sp EFEM-SP
=3 | 3.91079% [ 3.3.1079% | 0.5968 =3 | 4.9075-1073 | 3.4025- 1072 | 2.2406-10~*
=4 | 3.4107% | 331079 | 0.5968 I=4 | 4.9075-1073 | 3.4025- 1072 | 2.2406-10~*
I=5 | 3.5:1079 [ 3.3.107%% | 0.5967 =5 | 4.9075-1073 | 3.4428 - 1072 | 2.2406-10~*
Pr.3 | {rp—pam | §pp-sp | &rem-—sp  Pr.4 | Epp—pam | EFD-sP | EFEM-SP
1=3 0.4407 0.1930 0.0195 =3 0.0170 0.0185 0.0042
=4 0.4407 0.4493 0.0195 =4 0.0170 0.0185 0.0042
=5 0.4407 0.4600 0.0195 1=5 0.0170 0.0185 0.0042

Pr.5 | {rp-pam §FD-_sP §FEM-SP

[=3 | 2.4991-10=%0 | 1.7752:10720 | 1.1379-10—20

I=4 | 2.4991-10=20 | 1.7752-10~20 | 1.3814-10=2Y

=5 | 2.5688-1029 | 1.7752.10=%0 | 1.5718.10~2%Y

7 Conclusions

The numerical results indicate that our stellar prolongation method is more efficient than others
used in the literature. Even if we applied it on some particular cases, we expect this behavior
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to be the same on other more general problems, too.
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